Gebruik Frost's methode om een perfect (Nasik) magische 21x21x21 kubus te maken.
Je hebt
nodig een 21x21 magisch vierkant, dat panmagisch, symmetrisch, maar niet compact is.
Gebruik de horizontaal verschoven versies van het 21x21 magisch vierkant: 2-4-6-8-10-12-14-16-18-20-[1]-3-5-7-9-11-13-15-17-19 en gebruik het patroon met de rij- óf de
kolomcoördinaten in omgekeerde volgorde (21 t/m 1 i.p.v. 1 t/m 21). Neem 1x getal vanuit de horizontaal verschoven versies van het 21x21 magisch vierkant en tel hierbij 441x getal vanuit het rij-
of kolompatroon bij op.
Neem 1x getal uit patroon met (verschoven) 21x21 panmagisch/symmetrisch vierkant [laag 11]
135 | 65 | 19 | 123 | 33 | 90 | 56 | 168 | 284 | 379 | 344 | 415 | 325 | 424 | 360 | 314 | 265 | 196 | 215 | 248 | 183 |
96 | 48 | 161 | 294 | 389 | 337 | 407 | 331 | 430 | 361 | 297 | 272 | 202 | 217 | 236 | 185 | 141 | 72 | 2 | 124 | 39 |
347 | 400 | 323 | 436 | 367 | 298 | 255 | 209 | 223 | 238 | 173 | 143 | 78 | 9 | 107 | 40 | 102 | 54 | 153 | 287 | 399 |
304 | 256 | 192 | 230 | 244 | 175 | 131 | 80 | 15 | 114 | 23 | 103 | 60 | 159 | 279 | 392 | 357 | 410 | 316 | 428 | 373 |
181 | 133 | 68 | 17 | 120 | 30 | 86 | 61 | 165 | 285 | 384 | 350 | 420 | 326 | 421 | 365 | 310 | 262 | 193 | 213 | 251 |
36 | 93 | 44 | 166 | 291 | 390 | 342 | 413 | 336 | 431 | 358 | 302 | 268 | 199 | 214 | 234 | 188 | 139 | 70 | 5 | 122 |
396 | 348 | 405 | 329 | 441 | 368 | 295 | 260 | 205 | 220 | 235 | 171 | 146 | 76 | 7 | 110 | 38 | 99 | 51 | 149 | 292 |
378 | 305 | 253 | 197 | 226 | 241 | 172 | 129 | 83 | 13 | 112 | 26 | 101 | 57 | 156 | 275 | 397 | 354 | 411 | 321 | 434 |
247 | 178 | 130 | 66 | 20 | 118 | 28 | 89 | 59 | 162 | 282 | 380 | 355 | 417 | 327 | 426 | 371 | 315 | 263 | 190 | 218 |
125 | 34 | 91 | 47 | 164 | 288 | 387 | 338 | 418 | 333 | 432 | 363 | 308 | 273 | 200 | 211 | 239 | 184 | 136 | 67 | 3 |
290 | 393 | 345 | 401 | 334 | 438 | 369 | 300 | 266 | 210 | 221 | 232 | 176 | 142 | 73 | 4 | 108 | 41 | 97 | 49 | 152 |
439 | 375 | 306 | 258 | 203 | 231 | 242 | 169 | 134 | 79 | 10 | 109 | 24 | 104 | 55 | 154 | 278 | 395 | 351 | 408 | 317 |
224 | 252 | 179 | 127 | 71 | 16 | 115 | 25 | 87 | 62 | 160 | 280 | 383 | 353 | 414 | 324 | 422 | 376 | 312 | 264 | 195 |
8 | 121 | 31 | 88 | 45 | 167 | 286 | 385 | 341 | 416 | 330 | 429 | 359 | 313 | 270 | 201 | 216 | 245 | 189 | 137 | 64 |
150 | 293 | 391 | 343 | 404 | 332 | 435 | 366 | 296 | 271 | 207 | 222 | 237 | 182 | 147 | 74 | 1 | 113 | 37 | 94 | 46 |
320 | 437 | 372 | 303 | 254 | 208 | 228 | 243 | 174 | 140 | 84 | 11 | 106 | 29 | 100 | 52 | 151 | 276 | 398 | 349 | 406 |
191 | 229 | 249 | 180 | 132 | 77 | 21 | 116 | 22 | 92 | 58 | 157 | 277 | 381 | 356 | 412 | 322 | 425 | 374 | 309 | 261 |
69 | 14 | 126 | 32 | 85 | 50 | 163 | 283 | 382 | 339 | 419 | 328 | 427 | 362 | 311 | 267 | 198 | 212 | 250 | 186 | 138 |
43 | 155 | 289 | 388 | 340 | 402 | 335 | 433 | 364 | 299 | 269 | 204 | 219 | 233 | 187 | 144 | 75 | 6 | 119 | 42 | 95 |
403 | 318 | 440 | 370 | 301 | 257 | 206 | 225 | 240 | 170 | 145 | 81 | 12 | 111 | 35 | 105 | 53 | 148 | 281 | 394 | 346 |
259 | 194 | 227 | 246 | 177 | 128 | 82 | 18 | 117 | 27 | 98 | 63 | 158 | 274 | 386 | 352 | 409 | 319 | 423 | 377 | 307 |
+ 441x getal uit rij- of kolompatroon van 21x21 panmagisch/symmetrisch vierkant [laag 11]
6 | 3 | 0 | 5 | 1 | 4 | 2 | 7 | 13 | 18 | 16 | 19 | 15 | 20 | 17 | 14 | 12 | 9 | 10 | 11 | 8 |
4 | 2 | 7 | 13 | 18 | 16 | 19 | 15 | 20 | 17 | 14 | 12 | 9 | 10 | 11 | 8 | 6 | 3 | 0 | 5 | 1 |
16 | 19 | 15 | 20 | 17 | 14 | 12 | 9 | 10 | 11 | 8 | 6 | 3 | 0 | 5 | 1 | 4 | 2 | 7 | 13 | 18 |
14 | 12 | 9 | 10 | 11 | 8 | 6 | 3 | 0 | 5 | 1 | 4 | 2 | 7 | 13 | 18 | 16 | 19 | 15 | 20 | 17 |
8 | 6 | 3 | 0 | 5 | 1 | 4 | 2 | 7 | 13 | 18 | 16 | 19 | 15 | 20 | 17 | 14 | 12 | 9 | 10 | 11 |
1 | 4 | 2 | 7 | 13 | 18 | 16 | 19 | 15 | 20 | 17 | 14 | 12 | 9 | 10 | 11 | 8 | 6 | 3 | 0 | 5 |
18 | 16 | 19 | 15 | 20 | 17 | 14 | 12 | 9 | 10 | 11 | 8 | 6 | 3 | 0 | 5 | 1 | 4 | 2 | 7 | 13 |
17 | 14 | 12 | 9 | 10 | 11 | 8 | 6 | 3 | 0 | 5 | 1 | 4 | 2 | 7 | 13 | 18 | 16 | 19 | 15 | 20 |
11 | 8 | 6 | 3 | 0 | 5 | 1 | 4 | 2 | 7 | 13 | 18 | 16 | 19 | 15 | 20 | 17 | 14 | 12 | 9 | 10 |
5 | 1 | 4 | 2 | 7 | 13 | 18 | 16 | 19 | 15 | 20 | 17 | 14 | 12 | 9 | 10 | 11 | 8 | 6 | 3 | 0 |
13 | 18 | 16 | 19 | 15 | 20 | 17 | 14 | 12 | 9 | 10 | 11 | 8 | 6 | 3 | 0 | 5 | 1 | 4 | 2 | 7 |
20 | 17 | 14 | 12 | 9 | 10 | 11 | 8 | 6 | 3 | 0 | 5 | 1 | 4 | 2 | 7 | 13 | 18 | 16 | 19 | 15 |
10 | 11 | 8 | 6 | 3 | 0 | 5 | 1 | 4 | 2 | 7 | 13 | 18 | 16 | 19 | 15 | 20 | 17 | 14 | 12 | 9 |
0 | 5 | 1 | 4 | 2 | 7 | 13 | 18 | 16 | 19 | 15 | 20 | 17 | 14 | 12 | 9 | 10 | 11 | 8 | 6 | 3 |
7 | 13 | 18 | 16 | 19 | 15 | 20 | 17 | 14 | 12 | 9 | 10 | 11 | 8 | 6 | 3 | 0 | 5 | 1 | 4 | 2 |
15 | 20 | 17 | 14 | 12 | 9 | 10 | 11 | 8 | 6 | 3 | 0 | 5 | 1 | 4 | 2 | 7 | 13 | 18 | 16 | 19 |
9 | 10 | 11 | 8 | 6 | 3 | 0 | 5 | 1 | 4 | 2 | 7 | 13 | 18 | 16 | 19 | 15 | 20 | 17 | 14 | 12 |
3 | 0 | 5 | 1 | 4 | 2 | 7 | 13 | 18 | 16 | 19 | 15 | 20 | 17 | 14 | 12 | 9 | 10 | 11 | 8 | 6 |
2 | 7 | 13 | 18 | 16 | 19 | 15 | 20 | 17 | 14 | 12 | 9 | 10 | 11 | 8 | 6 | 3 | 0 | 5 | 1 | 4 |
19 | 15 | 20 | 17 | 14 | 12 | 9 | 10 | 11 | 8 | 6 | 3 | 0 | 5 | 1 | 4 | 2 | 7 | 13 | 18 | 16 |
12 | 9 | 10 | 11 | 8 | 6 | 3 | 0 | 5 | 1 | 4 | 2 | 7 | 13 | 18 | 16 | 19 | 15 | 20 | 17 | 14 |
= 21x21x21 Frost's Nasik & symmetrisch magische kubus
2781 | 1388 | 19 | 2328 | 474 | 1854 | 938 | 3255 | 6017 | 8317 | 7400 | 8794 | 6940 | 9244 | 7857 | 6488 | 5557 | 4165 | 4625 | 5099 | 3711 |
1860 | 930 | 3248 | 6027 | 8327 | 7393 | 8786 | 6946 | 9250 | 7858 | 6471 | 5564 | 4171 | 4627 | 5087 | 3713 | 2787 | 1395 | 2 | 2329 | 480 |
7403 | 8779 | 6938 | 9256 | 7864 | 6472 | 5547 | 4178 | 4633 | 5089 | 3701 | 2789 | 1401 | 9 | 2312 | 481 | 1866 | 936 | 3240 | 6020 | 8337 |
6478 | 5548 | 4161 | 4640 | 5095 | 3703 | 2777 | 1403 | 15 | 2319 | 464 | 1867 | 942 | 3246 | 6012 | 8330 | 7413 | 8789 | 6931 | 9248 | 7870 |
3709 | 2779 | 1391 | 17 | 2325 | 471 | 1850 | 943 | 3252 | 6018 | 8322 | 7406 | 8799 | 6941 | 9241 | 7862 | 6484 | 5554 | 4162 | 4623 | 5102 |
477 | 1857 | 926 | 3253 | 6024 | 8328 | 7398 | 8792 | 6951 | 9251 | 7855 | 6476 | 5560 | 4168 | 4624 | 5085 | 3716 | 2785 | 1393 | 5 | 2327 |
8334 | 7404 | 8784 | 6944 | 9261 | 7865 | 6469 | 5552 | 4174 | 4630 | 5086 | 3699 | 2792 | 1399 | 7 | 2315 | 479 | 1863 | 933 | 3236 | 6025 |
7875 | 6479 | 5545 | 4166 | 4636 | 5092 | 3700 | 2775 | 1406 | 13 | 2317 | 467 | 1865 | 939 | 3243 | 6008 | 8335 | 7410 | 8790 | 6936 | 9254 |
5098 | 3706 | 2776 | 1389 | 20 | 2323 | 469 | 1853 | 941 | 3249 | 6015 | 8318 | 7411 | 8796 | 6942 | 9246 | 7868 | 6489 | 5555 | 4159 | 4628 |
2330 | 475 | 1855 | 929 | 3251 | 6021 | 8325 | 7394 | 8797 | 6948 | 9252 | 7860 | 6482 | 5565 | 4169 | 4621 | 5090 | 3712 | 2782 | 1390 | 3 |
6023 | 8331 | 7401 | 8780 | 6949 | 9258 | 7866 | 6474 | 5558 | 4179 | 4631 | 5083 | 3704 | 2788 | 1396 | 4 | 2313 | 482 | 1861 | 931 | 3239 |
9259 | 7872 | 6480 | 5550 | 4172 | 4641 | 5093 | 3697 | 2780 | 1402 | 10 | 2314 | 465 | 1868 | 937 | 3241 | 6011 | 8333 | 7407 | 8787 | 6932 |
4634 | 5103 | 3707 | 2773 | 1394 | 16 | 2320 | 466 | 1851 | 944 | 3247 | 6013 | 8321 | 7409 | 8793 | 6939 | 9242 | 7873 | 6486 | 5556 | 4164 |
8 | 2326 | 472 | 1852 | 927 | 3254 | 6019 | 8323 | 7397 | 8795 | 6945 | 9249 | 7856 | 6487 | 5562 | 4170 | 4626 | 5096 | 3717 | 2783 | 1387 |
3237 | 6026 | 8329 | 7399 | 8783 | 6947 | 9255 | 7863 | 6470 | 5563 | 4176 | 4632 | 5088 | 3710 | 2793 | 1397 | 1 | 2318 | 478 | 1858 | 928 |
6935 | 9257 | 7869 | 6477 | 5546 | 4177 | 4638 | 5094 | 3702 | 2786 | 1407 | 11 | 2311 | 470 | 1864 | 934 | 3238 | 6009 | 8336 | 7405 | 8785 |
4160 | 4639 | 5100 | 3708 | 2778 | 1400 | 21 | 2321 | 463 | 1856 | 940 | 3244 | 6010 | 8319 | 7412 | 8791 | 6937 | 9245 | 7871 | 6483 | 5553 |
1392 | 14 | 2331 | 473 | 1849 | 932 | 3250 | 6016 | 8320 | 7395 | 8798 | 6943 | 9247 | 7859 | 6485 | 5559 | 4167 | 4622 | 5101 | 3714 | 2784 |
925 | 3242 | 6022 | 8326 | 7396 | 8781 | 6950 | 9253 | 7861 | 6473 | 5561 | 4173 | 4629 | 5084 | 3715 | 2790 | 1398 | 6 | 2324 | 483 | 1859 |
8782 | 6933 | 9260 | 7867 | 6475 | 5549 | 4175 | 4635 | 5091 | 3698 | 2791 | 1404 | 12 | 2316 | 476 | 1869 | 935 | 3235 | 6014 | 8332 | 7402 |
5551 | 4163 | 4637 | 5097 | 3705 | 2774 | 1405 | 18 | 2322 | 468 | 1862 | 945 | 3245 | 6007 | 8324 | 7408 | 8788 | 6934 | 9243 | 7874 | 6481 |
Voor volledige uitwerking met alle lagen, zie download.
De methode van Frost werkt voor orde is oneven veelvoud van 3 vanaf 9x9x9. Zie op deze webisite uitgewerkt voor:
9x9x9, 15x15x15, 21x21x21 en 27x27x27