Gebruik een specifiek 7x7 magisch vierkant en het rij- of kolompatroon hiervan om een 7x7x7 pantriagonaal magische kubus te maken.
Eerst maken we het symmetrische (maar niet pan)magisch 7x7 vierkant.
Neem 1x getal vanuit eerste patroon
4 | 5 | 6 | 0 | 1 | 2 | 3 |
5 | 6 | 0 | 1 | 2 | 3 | 4 |
6 | 0 | 1 | 2 | 3 | 4 | 5 |
0 | 1 | 2 | 3 | 4 | 5 | 6 |
1 | 2 | 3 | 4 | 5 | 6 | 0 |
2 | 3 | 4 | 5 | 6 | 0 | 1 |
3 | 4 | 5 | 6 | 0 | 1 | 2 |
+7x getal vanuit tweede patroon (= eerste patroon een kwartslag naar links gedraaid)
3 | 4 | 5 | 6 | 0 | 1 | 2 |
2 | 3 | 4 | 5 | 6 | 0 | 1 |
1 | 2 | 3 | 4 | 5 | 6 | 0 |
0 | 1 | 2 | 3 | 4 | 5 | 6 |
6 | 0 | 1 | 2 | 3 | 4 | 5 |
5 | 6 | 0 | 1 | 2 | 3 | 4 |
4 | 5 | 6 | 0 | 1 | 2 | 3 |
= 7x7 symmetrisch magisch vierkant
26 | 34 | 42 | 43 | 2 | 10 | 18 |
20 | 28 | 29 | 37 | 45 | 4 | 12 |
14 | 15 | 23 | 31 | 39 | 47 | 6 |
1 | 9 | 17 | 25 | 33 | 41 | 49 |
44 | 3 | 11 | 19 | 27 | 35 | 36 |
38 | 46 | 5 | 13 | 21 | 22 | 30 |
32 | 40 | 48 | 7 | 8 | 16 | 24 |
We gebruiken het 7x7 magisch vierkant en het rij- of kolompatroon hiervan om de middelste laag (4) van de 7x7x7 pantriagonaal magische kubus te maken. De patronen van de overige lagen zijn horizontale of verticale verschuivingen van de middelste laag. Zie beneden de patronen en het resultaat.
Neem 1x getal vanuit het eerste patroon
175 | 175 | 175 | 175 | 175 | 175 | 175 | ||
1 | ||||||||
175 | 44 | 3 | 11 | 19 | 27 | 35 | 36 | |
175 | 38 | 46 | 5 | 13 | 21 | 22 | 30 | |
175 | 32 | 40 | 48 | 7 | 8 | 16 | 24 | |
175 | 26 | 34 | 42 | 43 | 2 | 10 | 18 | |
175 | 20 | 28 | 29 | 37 | 45 | 4 | 12 | |
175 | 14 | 15 | 23 | 31 | 39 | 47 | 6 | |
175 | 1 | 9 | 17 | 25 | 33 | 41 | 49 | |
175 | 175 | 175 | 175 | 175 | 175 | 175 | ||
2 | ||||||||
175 | 38 | 46 | 5 | 13 | 21 | 22 | 30 | |
175 | 32 | 40 | 48 | 7 | 8 | 16 | 24 | |
175 | 26 | 34 | 42 | 43 | 2 | 10 | 18 | |
175 | 20 | 28 | 29 | 37 | 45 | 4 | 12 | |
175 | 14 | 15 | 23 | 31 | 39 | 47 | 6 | |
175 | 1 | 9 | 17 | 25 | 33 | 41 | 49 | |
175 | 44 | 3 | 11 | 19 | 27 | 35 | 36 | |
175 | 175 | 175 | 175 | 175 | 175 | 175 | ||
3 | ||||||||
175 | 32 | 40 | 48 | 7 | 8 | 16 | 24 | |
175 | 26 | 34 | 42 | 43 | 2 | 10 | 18 | |
175 | 20 | 28 | 29 | 37 | 45 | 4 | 12 | |
175 | 14 | 15 | 23 | 31 | 39 | 47 | 6 | |
175 | 1 | 9 | 17 | 25 | 33 | 41 | 49 | |
175 | 44 | 3 | 11 | 19 | 27 | 35 | 36 | |
175 | 38 | 46 | 5 | 13 | 21 | 22 | 30 | |
175 | 175 | 175 | 175 | 175 | 175 | 175 | ||
4 | ||||||||
175 | 26 | 34 | 42 | 43 | 2 | 10 | 18 | |
175 | 20 | 28 | 29 | 37 | 45 | 4 | 12 | |
175 | 14 | 15 | 23 | 31 | 39 | 47 | 6 | |
175 | 1 | 9 | 17 | 25 | 33 | 41 | 49 | |
175 | 44 | 3 | 11 | 19 | 27 | 35 | 36 | |
175 | 38 | 46 | 5 | 13 | 21 | 22 | 30 | |
175 | 32 | 40 | 48 | 7 | 8 | 16 | 24 | |
175 | 175 | 175 | 175 | 175 | 175 | 175 | ||
5 | ||||||||
175 | 20 | 28 | 29 | 37 | 45 | 4 | 12 | |
175 | 14 | 15 | 23 | 31 | 39 | 47 | 6 | |
175 | 1 | 9 | 17 | 25 | 33 | 41 | 49 | |
175 | 44 | 3 | 11 | 19 | 27 | 35 | 36 | |
175 | 38 | 46 | 5 | 13 | 21 | 22 | 30 | |
175 | 32 | 40 | 48 | 7 | 8 | 16 | 24 | |
175 | 26 | 34 | 42 | 43 | 2 | 10 | 18 | |
175 | 175 | 175 | 175 | 175 | 175 | 175 | ||
6 | ||||||||
175 | 14 | 15 | 23 | 31 | 39 | 47 | 6 | |
175 | 1 | 9 | 17 | 25 | 33 | 41 | 49 | |
175 | 44 | 3 | 11 | 19 | 27 | 35 | 36 | |
175 | 38 | 46 | 5 | 13 | 21 | 22 | 30 | |
175 | 32 | 40 | 48 | 7 | 8 | 16 | 24 | |
175 | 26 | 34 | 42 | 43 | 2 | 10 | 18 | |
175 | 20 | 28 | 29 | 37 | 45 | 4 | 12 | |
175 | 175 | 175 | 175 | 175 | 175 | 175 | ||
7 | ||||||||
175 | 1 | 9 | 17 | 25 | 33 | 41 | 49 | |
175 | 44 | 3 | 11 | 19 | 27 | 35 | 36 | |
175 | 38 | 46 | 5 | 13 | 21 | 22 | 30 | |
175 | 32 | 40 | 48 | 7 | 8 | 16 | 24 | |
175 | 26 | 34 | 42 | 43 | 2 | 10 | 18 | |
175 | 20 | 28 | 29 | 37 | 45 | 4 | 12 | |
175 | 14 | 15 | 23 | 31 | 39 | 47 | 6 |
+49x getal vanuit het tweede patroon
21 | 21 | 21 | 21 | 21 | 21 | 21 | ||
1 | ||||||||
21 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | |
21 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | |
21 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | |
21 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | |
21 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | |
21 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | |
21 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | |
2 | ||||||||
21 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | |
21 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | |
21 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | |
21 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | |
21 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | |
21 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | |
21 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | |
3 | ||||||||
21 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | |
21 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | |
21 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | |
21 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | |
21 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | |
21 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | |
21 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | |
4 | ||||||||
21 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | |
21 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | |
21 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | |
21 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | |
21 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | |
21 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | |
21 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | |
5 | ||||||||
21 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | |
21 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | |
21 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | |
21 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | |
21 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | |
21 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | |
21 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | |
6 | ||||||||
21 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | |
21 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | |
21 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | |
21 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | |
21 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | |
21 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | |
21 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | |
7 | ||||||||
21 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | |
21 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | |
21 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | |
21 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | |
21 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | |
21 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | |
21 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
= 7x7x7 pantriagonaal magische kubus
1204 | 1204 | 1204 | 1204 | 1204 | 1204 | 1204 | ||
1 | ||||||||
1204 | 44 | 52 | 109 | 166 | 223 | 280 | 330 | |
1204 | 87 | 144 | 152 | 209 | 266 | 316 | 30 | |
1204 | 130 | 187 | 244 | 252 | 302 | 16 | 73 | |
1204 | 173 | 230 | 287 | 337 | 2 | 59 | 116 | |
1204 | 216 | 273 | 323 | 37 | 94 | 102 | 159 | |
1204 | 259 | 309 | 23 | 80 | 137 | 194 | 202 | |
1204 | 295 | 9 | 66 | 123 | 180 | 237 | 294 | |
2 | ||||||||
1204 | 332 | 46 | 54 | 111 | 168 | 218 | 275 | |
1204 | 32 | 89 | 146 | 154 | 204 | 261 | 318 | |
1204 | 75 | 132 | 189 | 239 | 247 | 304 | 18 | |
1204 | 118 | 175 | 225 | 282 | 339 | 4 | 61 | |
1204 | 161 | 211 | 268 | 325 | 39 | 96 | 104 | |
1204 | 197 | 254 | 311 | 25 | 82 | 139 | 196 | |
1204 | 289 | 297 | 11 | 68 | 125 | 182 | 232 | |
3 | ||||||||
1204 | 277 | 334 | 48 | 56 | 106 | 163 | 220 | |
1204 | 320 | 34 | 91 | 141 | 149 | 206 | 263 | |
1204 | 20 | 77 | 127 | 184 | 241 | 249 | 306 | |
1204 | 63 | 113 | 170 | 227 | 284 | 341 | 6 | |
1204 | 99 | 156 | 213 | 270 | 327 | 41 | 98 | |
1204 | 191 | 199 | 256 | 313 | 27 | 84 | 134 | |
1204 | 234 | 291 | 299 | 13 | 70 | 120 | 177 | |
4 | ||||||||
1204 | 222 | 279 | 336 | 43 | 51 | 108 | 165 | |
1204 | 265 | 322 | 29 | 86 | 143 | 151 | 208 | |
1204 | 308 | 15 | 72 | 129 | 186 | 243 | 251 | |
1204 | 1 | 58 | 115 | 172 | 229 | 286 | 343 | |
1204 | 93 | 101 | 158 | 215 | 272 | 329 | 36 | |
1204 | 136 | 193 | 201 | 258 | 315 | 22 | 79 | |
1204 | 179 | 236 | 293 | 301 | 8 | 65 | 122 | |
5 | ||||||||
1204 | 167 | 224 | 274 | 331 | 45 | 53 | 110 | |
1204 | 210 | 260 | 317 | 31 | 88 | 145 | 153 | |
1204 | 246 | 303 | 17 | 74 | 131 | 188 | 245 | |
1204 | 338 | 3 | 60 | 117 | 174 | 231 | 281 | |
1204 | 38 | 95 | 103 | 160 | 217 | 267 | 324 | |
1204 | 81 | 138 | 195 | 203 | 253 | 310 | 24 | |
1204 | 124 | 181 | 238 | 288 | 296 | 10 | 67 | |
6 | ||||||||
1204 | 112 | 162 | 219 | 276 | 333 | 47 | 55 | |
1204 | 148 | 205 | 262 | 319 | 33 | 90 | 147 | |
1204 | 240 | 248 | 305 | 19 | 76 | 133 | 183 | |
1204 | 283 | 340 | 5 | 62 | 119 | 169 | 226 | |
1204 | 326 | 40 | 97 | 105 | 155 | 212 | 269 | |
1204 | 26 | 83 | 140 | 190 | 198 | 255 | 312 | |
1204 | 69 | 126 | 176 | 233 | 290 | 298 | 12 | |
7 | ||||||||
1204 | 50 | 107 | 164 | 221 | 278 | 335 | 49 | |
1204 | 142 | 150 | 207 | 264 | 321 | 35 | 85 | |
1204 | 185 | 242 | 250 | 307 | 21 | 71 | 128 | |
1204 | 228 | 285 | 342 | 7 | 57 | 114 | 171 | |
1204 | 271 | 328 | 42 | 92 | 100 | 157 | 214 | |
1204 | 314 | 28 | 78 | 135 | 192 | 200 | 257 | |
1204 | 14 | 64 | 121 | 178 | 235 | 292 | 300 |
Zie voor check of alle getallen zich in de magische kubus bevinden en optelling van de getallen tot de juiste magische som leidt, onderstaande download.
Deze methode is uitgewerkt voor de 5x5x5 en de 7x7x7 pantriagonaal magische kubus (vanaf 9x9x9 geeft de shift methode voor elk oneven magische kubus een Nasik resultaat).