Franklin panmagic 16x16x16 cube (Composite 2)

 

Use a 8x a proportional version of Dwane Campbell's 8x8x8 magic cube to construct a Franklin panmagic 16x16x16 cube.

 

 

Take 1x number from grid with (shifted version of) 8x8x8 Nasik magic cube [level 1]

1 252 309 464 145 108 421 352 145 108 421 352 1 252 309 464
429 344 153 100 317 456 9 244 317 456 9 244 429 344 153 100
220 33 496 277 76 177 384 389 76 177 384 389 220 33 496 277
376 397 68 185 488 285 212 41 488 285 212 41 376 397 68 185
2 251 310 463 146 107 422 351 146 107 422 351 2 251 310 463
430 343 154 99 318 455 10 243 318 455 10 243 430 343 154 99
219 34 495 278 75 178 383 390 75 178 383 390 219 34 495 278
375 398 67 186 487 286 211 42 487 286 211 42 375 398 67 186
2 251 310 463 146 107 422 351 146 107 422 351 2 251 310 463
430 343 154 99 318 455 10 243 318 455 10 243 430 343 154 99
219 34 495 278 75 178 383 390 75 178 383 390 219 34 495 278
375 398 67 186 487 286 211 42 487 286 211 42 375 398 67 186
1 252 309 464 145 108 421 352 145 108 421 352 1 252 309 464
429 344 153 100 317 456 9 244 317 456 9 244 429 344 153 100
220 33 496 277 76 177 384 389 76 177 384 389 220 33 496 277
376 397 68 185 488 285 212 41 488 285 212 41 376 397 68 185

 

 

+ 512x number from second grid [level 1]

0 1 6 7 6 7 0 1 0 1 6 7 6 7 0 1
6 7 0 1 0 1 6 7 6 7 0 1 0 1 6 7
1 0 7 6 7 6 1 0 1 0 7 6 7 6 1 0
7 6 1 0 1 0 7 6 7 6 1 0 1 0 7 6
1 0 7 6 7 6 1 0 1 0 7 6 7 6 1 0
7 6 1 0 1 0 7 6 7 6 1 0 1 0 7 6
0 1 6 7 6 7 0 1 0 1 6 7 6 7 0 1
6 7 0 1 0 1 6 7 6 7 0 1 0 1 6 7
0 1 6 7 6 7 0 1 0 1 6 7 6 7 0 1
6 7 0 1 0 1 6 7 6 7 0 1 0 1 6 7
1 0 7 6 7 6 1 0 1 0 7 6 7 6 1 0
7 6 1 0 1 0 7 6 7 6 1 0 1 0 7 6
1 0 7 6 7 6 1 0 1 0 7 6 7 6 1 0
7 6 1 0 1 0 7 6 7 6 1 0 1 0 7 6
0 1 6 7 6 7 0 1 0 1 6 7 6 7 0 1
6 7 0 1 0 1 6 7 6 7 0 1 0 1 6 7

 

 

= Franklin panmagic 16x16x16 magic cube [level 1]

1 764 3381 4048 3217 3692 421 864 145 620 3493 3936 3073 3836 309 976
3501 3928 153 612 317 968 3081 3828 3389 4040 9 756 429 856 3225 3684
732 33 4080 3349 3660 3249 896 389 588 177 3968 3461 3804 3105 1008 277
3960 3469 580 185 1000 285 3796 3113 4072 3357 724 41 888 397 3652 3257
514 251 3894 3535 3730 3179 934 351 658 107 4006 3423 3586 3323 822 463
4014 3415 666 99 830 455 3594 3315 3902 3527 522 243 942 343 3738 3171
219 546 3567 3862 3147 3762 383 902 75 690 3455 3974 3291 3618 495 790
3447 3982 67 698 487 798 3283 3626 3559 3870 211 554 375 910 3139 3770
2 763 3382 4047 3218 3691 422 863 146 619 3494 3935 3074 3835 310 975
3502 3927 154 611 318 967 3082 3827 3390 4039 10 755 430 855 3226 3683
731 34 4079 3350 3659 3250 895 390 587 178 3967 3462 3803 3106 1007 278
3959 3470 579 186 999 286 3795 3114 4071 3358 723 42 887 398 3651 3258
513 252 3893 3536 3729 3180 933 352 657 108 4005 3424 3585 3324 821 464
4013 3416 665 100 829 456 3593 3316 3901 3528 521 244 941 344 3737 3172
220 545 3568 3861 3148 3761 384 901 76 689 3456 3973 3292 3617 496 789
3448 3981 68 697 488 797 3284 3625 3560 3869 212 553 376 909 3140 3769

 

 

This 16x16x16 cube, which consists of 8 proportional Nasik 8x8x8 magic cubes is Nasik, (in the levels almost 2x2, but fully) 2x2x2 compact and all 1/4 rows/columns/diagonals in the levels and 1/4 pillars give 1/4 of the magic sum and 1/2 space diagonals give 1/2 of the magic sum.

 

See all grids and all levels of the 16x16x16 magic cube in the download below.

 

With method composite 2 you use a magic cube to construct a 2x (or 3x or 4x or ...) as big magic cube. See on this website the construction of:

12x12x12 (diagonal)16x16x16 (Nasik)20x20x20 (diagonal)24x24x24 (diagonal),

32x32x32 (Nasik)

 

Download
16x16x16, Franklin panmagic, consisting
Microsoft Power Point presentatie 1.3 MB