See for explanation about the Medjig method to construct a magic square: 6x6 magic square.
The first grid consists of the 2x2x2 'blown up' Dwane Campbell's 8x8x8 Nasik magic cube. The second grid consists not of the 2x2 Medjig tiles with the numbers 0 up to 3, but consists of the 2x2x2 Medjig blocks with the numbers 0 up to 7. My secret is that I used the grid to of a Nasik 8x8x8 magic cube, which happened to be a Medjig grid 3D.
Take 1x number from first grid with 2x2x2 'blown up' 8x8x8 D. Campbell [level 1]
1 | 1 | 252 | 252 | 309 | 309 | 464 | 464 | 145 | 145 | 108 | 108 | 421 | 421 | 352 | 352 |
1 | 1 | 252 | 252 | 309 | 309 | 464 | 464 | 145 | 145 | 108 | 108 | 421 | 421 | 352 | 352 |
429 | 429 | 344 | 344 | 153 | 153 | 100 | 100 | 317 | 317 | 456 | 456 | 9 | 9 | 244 | 244 |
429 | 429 | 344 | 344 | 153 | 153 | 100 | 100 | 317 | 317 | 456 | 456 | 9 | 9 | 244 | 244 |
220 | 220 | 33 | 33 | 496 | 496 | 277 | 277 | 76 | 76 | 177 | 177 | 384 | 384 | 389 | 389 |
220 | 220 | 33 | 33 | 496 | 496 | 277 | 277 | 76 | 76 | 177 | 177 | 384 | 384 | 389 | 389 |
376 | 376 | 397 | 397 | 68 | 68 | 185 | 185 | 488 | 488 | 285 | 285 | 212 | 212 | 41 | 41 |
376 | 376 | 397 | 397 | 68 | 68 | 185 | 185 | 488 | 488 | 285 | 285 | 212 | 212 | 41 | 41 |
2 | 2 | 251 | 251 | 310 | 310 | 463 | 463 | 146 | 146 | 107 | 107 | 422 | 422 | 351 | 351 |
2 | 2 | 251 | 251 | 310 | 310 | 463 | 463 | 146 | 146 | 107 | 107 | 422 | 422 | 351 | 351 |
430 | 430 | 343 | 343 | 154 | 154 | 99 | 99 | 318 | 318 | 455 | 455 | 10 | 10 | 243 | 243 |
430 | 430 | 343 | 343 | 154 | 154 | 99 | 99 | 318 | 318 | 455 | 455 | 10 | 10 | 243 | 243 |
219 | 219 | 34 | 34 | 495 | 495 | 278 | 278 | 75 | 75 | 178 | 178 | 383 | 383 | 390 | 390 |
219 | 219 | 34 | 34 | 495 | 495 | 278 | 278 | 75 | 75 | 178 | 178 | 383 | 383 | 390 | 390 |
375 | 375 | 398 | 398 | 67 | 67 | 186 | 186 | 487 | 487 | 286 | 286 | 211 | 211 | 42 | 42 |
375 | 375 | 398 | 398 | 67 | 67 | 186 | 186 | 487 | 487 | 286 | 286 | 211 | 211 | 42 | 42 |
+512x number from second level with 2x2x2 Medjig blocks [level 1]
0 | 6 | 3 | 5 | 0 | 6 | 3 | 5 | 7 | 1 | 4 | 2 | 7 | 1 | 4 | 2 |
3 | 5 | 0 | 6 | 3 | 5 | 0 | 6 | 4 | 2 | 7 | 1 | 4 | 2 | 7 | 1 |
4 | 2 | 7 | 1 | 4 | 2 | 7 | 1 | 3 | 5 | 0 | 6 | 3 | 5 | 0 | 6 |
7 | 1 | 4 | 2 | 7 | 1 | 4 | 2 | 0 | 6 | 3 | 5 | 0 | 6 | 3 | 5 |
0 | 6 | 3 | 5 | 0 | 6 | 3 | 5 | 7 | 1 | 4 | 2 | 7 | 1 | 4 | 2 |
3 | 5 | 0 | 6 | 3 | 5 | 0 | 6 | 4 | 2 | 7 | 1 | 4 | 2 | 7 | 1 |
4 | 2 | 7 | 1 | 4 | 2 | 7 | 1 | 3 | 5 | 0 | 6 | 3 | 5 | 0 | 6 |
7 | 1 | 4 | 2 | 7 | 1 | 4 | 2 | 0 | 6 | 3 | 5 | 0 | 6 | 3 | 5 |
0 | 6 | 3 | 5 | 0 | 6 | 3 | 5 | 7 | 1 | 4 | 2 | 7 | 1 | 4 | 2 |
3 | 5 | 0 | 6 | 3 | 5 | 0 | 6 | 4 | 2 | 7 | 1 | 4 | 2 | 7 | 1 |
4 | 2 | 7 | 1 | 4 | 2 | 7 | 1 | 3 | 5 | 0 | 6 | 3 | 5 | 0 | 6 |
7 | 1 | 4 | 2 | 7 | 1 | 4 | 2 | 0 | 6 | 3 | 5 | 0 | 6 | 3 | 5 |
0 | 6 | 3 | 5 | 0 | 6 | 3 | 5 | 7 | 1 | 4 | 2 | 7 | 1 | 4 | 2 |
3 | 5 | 0 | 6 | 3 | 5 | 0 | 6 | 4 | 2 | 7 | 1 | 4 | 2 | 7 | 1 |
4 | 2 | 7 | 1 | 4 | 2 | 7 | 1 | 3 | 5 | 0 | 6 | 3 | 5 | 0 | 6 |
7 | 1 | 4 | 2 | 7 | 1 | 4 | 2 | 0 | 6 | 3 | 5 | 0 | 6 | 3 | 5 |
= 16x16x16 Nasik (= pandiagonal & pantriagonal) magic cube [level 1]
1 | 3073 | 1788 | 2812 | 309 | 3381 | 2000 | 3024 | 3729 | 657 | 2156 | 1132 | 4005 | 933 | 2400 | 1376 |
1537 | 2561 | 252 | 3324 | 1845 | 2869 | 464 | 3536 | 2193 | 1169 | 3692 | 620 | 2469 | 1445 | 3936 | 864 |
2477 | 1453 | 3928 | 856 | 2201 | 1177 | 3684 | 612 | 1853 | 2877 | 456 | 3528 | 1545 | 2569 | 244 | 3316 |
4013 | 941 | 2392 | 1368 | 3737 | 665 | 2148 | 1124 | 317 | 3389 | 1992 | 3016 | 9 | 3081 | 1780 | 2804 |
220 | 3292 | 1569 | 2593 | 496 | 3568 | 1813 | 2837 | 3660 | 588 | 2225 | 1201 | 3968 | 896 | 2437 | 1413 |
1756 | 2780 | 33 | 3105 | 2032 | 3056 | 277 | 3349 | 2124 | 1100 | 3761 | 689 | 2432 | 1408 | 3973 | 901 |
2424 | 1400 | 3981 | 909 | 2116 | 1092 | 3769 | 697 | 2024 | 3048 | 285 | 3357 | 1748 | 2772 | 41 | 3113 |
3960 | 888 | 2445 | 1421 | 3652 | 580 | 2233 | 1209 | 488 | 3560 | 1821 | 2845 | 212 | 3284 | 1577 | 2601 |
2 | 3074 | 1787 | 2811 | 310 | 3382 | 1999 | 3023 | 3730 | 658 | 2155 | 1131 | 4006 | 934 | 2399 | 1375 |
1538 | 2562 | 251 | 3323 | 1846 | 2870 | 463 | 3535 | 2194 | 1170 | 3691 | 619 | 2470 | 1446 | 3935 | 863 |
2478 | 1454 | 3927 | 855 | 2202 | 1178 | 3683 | 611 | 1854 | 2878 | 455 | 3527 | 1546 | 2570 | 243 | 3315 |
4014 | 942 | 2391 | 1367 | 3738 | 666 | 2147 | 1123 | 318 | 3390 | 1991 | 3015 | 10 | 3082 | 1779 | 2803 |
219 | 3291 | 1570 | 2594 | 495 | 3567 | 1814 | 2838 | 3659 | 587 | 2226 | 1202 | 3967 | 895 | 2438 | 1414 |
1755 | 2779 | 34 | 3106 | 2031 | 3055 | 278 | 3350 | 2123 | 1099 | 3762 | 690 | 2431 | 1407 | 3974 | 902 |
2423 | 1399 | 3982 | 910 | 2115 | 1091 | 3770 | 698 | 2023 | 3047 | 286 | 3358 | 1747 | 2771 | 42 | 3114 |
3959 | 887 | 2446 | 1422 | 3651 | 579 | 2234 | 1210 | 487 | 3559 | 1822 | 2846 | 211 | 3283 | 1578 | 2602 |
1/2 rows/columns/diagonals in each level give 1/2 of the magic sum and pandiagonals in each level and pillars, pandiagonals and (pan)triagonals through the levels give the magic sum.
See for all levels and check if all numbers are in the magic cube and addition of the numbers give the right magic sum, the download below.
With method of Medjig you can construct a magic cube of even order. See on this website the construction of:
6x6x6 (simple), 8x8x8 (pantriagonal), 10x10x10 (simple), 10x10x10 (pantriagonal), 12x12x12 (pantriagonal), 14x14x14 (pantriagonal), 16x16x16 (Nasik), 20x20x20 (pantriagonal), 22x22x22 (pantriagonal), 24x24x24 (diagonal), 24x24x24 (pantriagonal), 26x26x26 (pantriagonal), 28x28x28 (pantriagonal) and 32x32x32 (Nasik)