Take as first grid (in level 1 up to 14) 14x 28x28 magic square consisting of 2x2 proportional 14x14 magic square and (in level 15 up to 28) 14x its inverse. The second grid consists of the numbers 0 up to 27. (For example in level 1 are number 0 and 27, but always 2x or 4x 0 and 2x or 4x 27 in a line --> horizontal/vertical/diagonal).
See below the grids and result of level 1.
Take 1x number from first grid with 28x28 magic square consisting of 4x 14x14 [level 1]
169 | 22 | 194 | 47 | 163 | 16 | 188 | 629 | 745 | 598 | 770 | 623 | 739 | 592 | 365 | 218 | 390 | 243 | 359 | 212 | 384 | 433 | 549 | 402 | 574 | 427 | 543 | 396 |
659 | 708 | 684 | 733 | 653 | 702 | 678 | 139 | 59 | 108 | 84 | 133 | 53 | 102 | 463 | 512 | 488 | 537 | 457 | 506 | 482 | 335 | 255 | 304 | 280 | 329 | 249 | 298 |
152 | 5 | 170 | 23 | 195 | 48 | 164 | 605 | 777 | 630 | 746 | 599 | 764 | 617 | 348 | 201 | 366 | 219 | 391 | 244 | 360 | 409 | 581 | 434 | 550 | 403 | 568 | 421 |
642 | 691 | 660 | 709 | 685 | 734 | 654 | 115 | 91 | 140 | 60 | 109 | 78 | 127 | 446 | 495 | 464 | 513 | 489 | 538 | 458 | 311 | 287 | 336 | 256 | 305 | 274 | 323 |
177 | 30 | 153 | 6 | 171 | 24 | 196 | 637 | 753 | 606 | 771 | 624 | 747 | 600 | 373 | 226 | 349 | 202 | 367 | 220 | 392 | 441 | 557 | 410 | 575 | 428 | 551 | 404 |
667 | 716 | 643 | 692 | 661 | 710 | 686 | 147 | 67 | 116 | 85 | 134 | 61 | 110 | 471 | 520 | 447 | 496 | 465 | 514 | 490 | 343 | 263 | 312 | 281 | 330 | 257 | 306 |
748 | 13 | 178 | 31 | 154 | 7 | 25 | 172 | 778 | 631 | 754 | 607 | 772 | 625 | 552 | 209 | 374 | 227 | 350 | 203 | 221 | 368 | 582 | 435 | 558 | 411 | 576 | 429 |
62 | 699 | 668 | 717 | 644 | 693 | 662 | 711 | 92 | 141 | 68 | 117 | 86 | 135 | 258 | 503 | 472 | 521 | 448 | 497 | 466 | 515 | 288 | 337 | 264 | 313 | 282 | 331 |
38 | 185 | 14 | 161 | 32 | 179 | 148 | 589 | 614 | 761 | 632 | 779 | 608 | 755 | 234 | 381 | 210 | 357 | 228 | 375 | 344 | 393 | 418 | 565 | 436 | 583 | 412 | 559 |
675 | 724 | 651 | 700 | 669 | 718 | 638 | 99 | 75 | 124 | 93 | 142 | 69 | 118 | 479 | 528 | 455 | 504 | 473 | 522 | 442 | 295 | 271 | 320 | 289 | 338 | 265 | 314 |
21 | 168 | 39 | 186 | 8 | 155 | 33 | 768 | 590 | 737 | 615 | 762 | 633 | 780 | 217 | 364 | 235 | 382 | 204 | 351 | 229 | 572 | 394 | 541 | 419 | 566 | 437 | 584 |
707 | 658 | 725 | 676 | 694 | 645 | 719 | 82 | 100 | 51 | 125 | 76 | 143 | 94 | 511 | 462 | 529 | 480 | 498 | 449 | 523 | 278 | 296 | 247 | 321 | 272 | 339 | 290 |
46 | 193 | 15 | 162 | 40 | 187 | 9 | 744 | 622 | 769 | 591 | 738 | 616 | 763 | 242 | 389 | 211 | 358 | 236 | 383 | 205 | 548 | 426 | 573 | 395 | 542 | 420 | 567 |
732 | 683 | 701 | 652 | 726 | 677 | 695 | 58 | 132 | 83 | 101 | 52 | 126 | 77 | 536 | 487 | 505 | 456 | 530 | 481 | 499 | 254 | 328 | 279 | 297 | 248 | 322 | 273 |
561 | 414 | 586 | 439 | 555 | 408 | 580 | 237 | 353 | 206 | 378 | 231 | 347 | 200 | 757 | 610 | 782 | 635 | 751 | 604 | 776 | 41 | 157 | 10 | 182 | 35 | 151 | 4 |
267 | 316 | 292 | 341 | 261 | 310 | 286 | 531 | 451 | 500 | 476 | 525 | 445 | 494 | 71 | 120 | 96 | 145 | 65 | 114 | 90 | 727 | 647 | 696 | 672 | 721 | 641 | 690 |
544 | 397 | 562 | 415 | 587 | 440 | 556 | 213 | 385 | 238 | 354 | 207 | 372 | 225 | 740 | 593 | 758 | 611 | 783 | 636 | 752 | 17 | 189 | 42 | 158 | 11 | 176 | 29 |
250 | 299 | 268 | 317 | 293 | 342 | 262 | 507 | 483 | 532 | 452 | 501 | 470 | 519 | 54 | 103 | 72 | 121 | 97 | 146 | 66 | 703 | 679 | 728 | 648 | 697 | 666 | 715 |
569 | 422 | 545 | 398 | 563 | 416 | 588 | 245 | 361 | 214 | 379 | 232 | 355 | 208 | 765 | 618 | 741 | 594 | 759 | 612 | 784 | 49 | 165 | 18 | 183 | 36 | 159 | 12 |
275 | 324 | 251 | 300 | 269 | 318 | 294 | 539 | 459 | 508 | 477 | 526 | 453 | 502 | 79 | 128 | 55 | 104 | 73 | 122 | 98 | 735 | 655 | 704 | 673 | 722 | 649 | 698 |
356 | 405 | 570 | 423 | 546 | 399 | 417 | 564 | 386 | 239 | 362 | 215 | 380 | 233 | 160 | 601 | 766 | 619 | 742 | 595 | 613 | 760 | 190 | 43 | 166 | 19 | 184 | 37 |
454 | 307 | 276 | 325 | 252 | 301 | 270 | 319 | 484 | 533 | 460 | 509 | 478 | 527 | 650 | 111 | 80 | 129 | 56 | 105 | 74 | 123 | 680 | 729 | 656 | 705 | 674 | 723 |
430 | 577 | 406 | 553 | 424 | 571 | 540 | 197 | 222 | 369 | 240 | 387 | 216 | 363 | 626 | 773 | 602 | 749 | 620 | 767 | 736 | 1 | 26 | 173 | 44 | 191 | 20 | 167 |
283 | 332 | 259 | 308 | 277 | 326 | 246 | 491 | 467 | 516 | 485 | 534 | 461 | 510 | 87 | 136 | 63 | 112 | 81 | 130 | 50 | 687 | 663 | 712 | 681 | 730 | 657 | 706 |
413 | 560 | 431 | 578 | 400 | 547 | 425 | 376 | 198 | 345 | 223 | 370 | 241 | 388 | 609 | 756 | 627 | 774 | 596 | 743 | 621 | 180 | 2 | 149 | 27 | 174 | 45 | 192 |
315 | 266 | 333 | 284 | 302 | 253 | 327 | 474 | 492 | 443 | 517 | 468 | 535 | 486 | 119 | 70 | 137 | 88 | 106 | 57 | 131 | 670 | 688 | 639 | 713 | 664 | 731 | 682 |
438 | 585 | 407 | 554 | 432 | 579 | 401 | 352 | 230 | 377 | 199 | 346 | 224 | 371 | 634 | 781 | 603 | 750 | 628 | 775 | 597 | 156 | 34 | 181 | 3 | 150 | 28 | 175 |
340 | 291 | 309 | 260 | 334 | 285 | 303 | 450 | 524 | 475 | 493 | 444 | 518 | 469 | 144 | 95 | 113 | 64 | 138 | 89 | 107 | 646 | 720 | 671 | 689 | 640 | 714 | 665 |
+784x number from second grid with numbers 0 up to 27 [level 1]
0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 |
0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 |
27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 |
27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 |
0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 |
0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 |
27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 |
27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 |
0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 |
0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 |
27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 |
27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 |
0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 27 | 27 |
0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 27 | 27 |
27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 0 | 0 |
27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 0 | 0 |
0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 |
0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 |
27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 |
27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 |
0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 |
0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 |
27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 |
27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 |
0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 |
0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 |
27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 |
27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 | 0 | 0 | 27 | 27 |
= 28x28x28 diagonal magic cube [level 1]
169 | 22 | 21362 | 21215 | 163 | 16 | 21356 | 21797 | 745 | 598 | 21938 | 21791 | 21907 | 21760 | 365 | 218 | 21558 | 21411 | 359 | 212 | 21552 | 21601 | 549 | 402 | 21742 | 21595 | 543 | 396 |
659 | 708 | 21852 | 21901 | 653 | 702 | 21846 | 21307 | 59 | 108 | 21252 | 21301 | 21221 | 21270 | 463 | 512 | 21656 | 21705 | 457 | 506 | 21650 | 21503 | 255 | 304 | 21448 | 21497 | 249 | 298 |
21320 | 21173 | 170 | 23 | 21363 | 21216 | 164 | 605 | 21945 | 21798 | 746 | 599 | 764 | 617 | 21516 | 21369 | 366 | 219 | 21559 | 21412 | 360 | 409 | 21749 | 21602 | 550 | 403 | 21736 | 21589 |
21810 | 21859 | 660 | 709 | 21853 | 21902 | 654 | 115 | 21259 | 21308 | 60 | 109 | 78 | 127 | 21614 | 21663 | 464 | 513 | 21657 | 21706 | 458 | 311 | 21455 | 21504 | 256 | 305 | 21442 | 21491 |
177 | 30 | 21321 | 21174 | 171 | 24 | 21364 | 21805 | 753 | 606 | 21939 | 21792 | 21915 | 21768 | 373 | 226 | 21517 | 21370 | 367 | 220 | 21560 | 21609 | 557 | 410 | 21743 | 21596 | 551 | 404 |
667 | 716 | 21811 | 21860 | 661 | 710 | 21854 | 21315 | 67 | 116 | 21253 | 21302 | 21229 | 21278 | 471 | 520 | 21615 | 21664 | 465 | 514 | 21658 | 21511 | 263 | 312 | 21449 | 21498 | 257 | 306 |
21916 | 21181 | 178 | 31 | 21322 | 21175 | 25 | 172 | 21946 | 21799 | 754 | 607 | 772 | 625 | 21720 | 21377 | 374 | 227 | 21518 | 21371 | 221 | 368 | 21750 | 21603 | 558 | 411 | 21744 | 21597 |
21230 | 21867 | 668 | 717 | 21812 | 21861 | 662 | 711 | 21260 | 21309 | 68 | 117 | 86 | 135 | 21426 | 21671 | 472 | 521 | 21616 | 21665 | 466 | 515 | 21456 | 21505 | 264 | 313 | 21450 | 21499 |
38 | 185 | 21182 | 21329 | 32 | 179 | 21316 | 21757 | 614 | 761 | 21800 | 21947 | 21776 | 21923 | 234 | 381 | 21378 | 21525 | 228 | 375 | 21512 | 21561 | 418 | 565 | 21604 | 21751 | 412 | 559 |
675 | 724 | 21819 | 21868 | 669 | 718 | 21806 | 21267 | 75 | 124 | 21261 | 21310 | 21237 | 21286 | 479 | 528 | 21623 | 21672 | 473 | 522 | 21610 | 21463 | 271 | 320 | 21457 | 21506 | 265 | 314 |
21189 | 21336 | 39 | 186 | 21176 | 21323 | 33 | 768 | 21758 | 21905 | 615 | 762 | 633 | 780 | 21385 | 21532 | 235 | 382 | 21372 | 21519 | 229 | 572 | 21562 | 21709 | 419 | 566 | 21605 | 21752 |
21875 | 21826 | 725 | 676 | 21862 | 21813 | 719 | 82 | 21268 | 21219 | 125 | 76 | 143 | 94 | 21679 | 21630 | 529 | 480 | 21666 | 21617 | 523 | 278 | 21464 | 21415 | 321 | 272 | 21507 | 21458 |
46 | 193 | 21183 | 21330 | 40 | 187 | 21177 | 21912 | 622 | 769 | 21759 | 21906 | 616 | 763 | 242 | 389 | 21379 | 21526 | 236 | 383 | 21373 | 21716 | 426 | 573 | 21563 | 21710 | 21588 | 21735 |
732 | 683 | 21869 | 21820 | 726 | 677 | 21863 | 21226 | 132 | 83 | 21269 | 21220 | 126 | 77 | 536 | 487 | 21673 | 21624 | 530 | 481 | 21667 | 21422 | 328 | 279 | 21465 | 21416 | 21490 | 21441 |
21729 | 21582 | 586 | 439 | 21723 | 21576 | 580 | 237 | 21521 | 21374 | 378 | 231 | 21515 | 21368 | 21925 | 21778 | 782 | 635 | 21919 | 21772 | 776 | 41 | 21325 | 21178 | 182 | 35 | 151 | 4 |
21435 | 21484 | 292 | 341 | 21429 | 21478 | 286 | 531 | 21619 | 21668 | 476 | 525 | 21613 | 21662 | 21239 | 21288 | 96 | 145 | 21233 | 21282 | 90 | 727 | 21815 | 21864 | 672 | 721 | 641 | 690 |
544 | 397 | 21730 | 21583 | 587 | 440 | 21724 | 21381 | 385 | 238 | 21522 | 21375 | 21540 | 21393 | 740 | 593 | 21926 | 21779 | 783 | 636 | 21920 | 21185 | 189 | 42 | 21326 | 21179 | 176 | 29 |
250 | 299 | 21436 | 21485 | 293 | 342 | 21430 | 21675 | 483 | 532 | 21620 | 21669 | 21638 | 21687 | 54 | 103 | 21240 | 21289 | 97 | 146 | 21234 | 21871 | 679 | 728 | 21816 | 21865 | 666 | 715 |
21737 | 21590 | 545 | 398 | 21731 | 21584 | 588 | 245 | 21529 | 21382 | 379 | 232 | 355 | 208 | 21933 | 21786 | 741 | 594 | 21927 | 21780 | 784 | 49 | 21333 | 21186 | 183 | 36 | 21327 | 21180 |
21443 | 21492 | 251 | 300 | 21437 | 21486 | 294 | 539 | 21627 | 21676 | 477 | 526 | 453 | 502 | 21247 | 21296 | 55 | 104 | 21241 | 21290 | 98 | 735 | 21823 | 21872 | 673 | 722 | 21817 | 21866 |
356 | 405 | 21738 | 21591 | 546 | 399 | 21585 | 21732 | 386 | 239 | 21530 | 21383 | 21548 | 21401 | 160 | 601 | 21934 | 21787 | 742 | 595 | 21781 | 21928 | 190 | 43 | 21334 | 21187 | 184 | 37 |
454 | 307 | 21444 | 21493 | 252 | 301 | 21438 | 21487 | 484 | 533 | 21628 | 21677 | 21646 | 21695 | 650 | 111 | 21248 | 21297 | 56 | 105 | 21242 | 21291 | 680 | 729 | 21824 | 21873 | 674 | 723 |
21598 | 21745 | 406 | 553 | 21592 | 21739 | 540 | 197 | 21390 | 21537 | 240 | 387 | 216 | 363 | 21794 | 21941 | 602 | 749 | 21788 | 21935 | 736 | 1 | 21194 | 21341 | 44 | 191 | 21188 | 21335 |
21451 | 21500 | 259 | 308 | 21445 | 21494 | 246 | 491 | 21635 | 21684 | 485 | 534 | 461 | 510 | 21255 | 21304 | 63 | 112 | 21249 | 21298 | 50 | 687 | 21831 | 21880 | 681 | 730 | 21825 | 21874 |
413 | 560 | 21599 | 21746 | 400 | 547 | 21593 | 21544 | 198 | 345 | 21391 | 21538 | 21409 | 21556 | 609 | 756 | 21795 | 21942 | 596 | 743 | 21789 | 21348 | 2 | 149 | 21195 | 21342 | 45 | 192 |
315 | 266 | 21501 | 21452 | 302 | 253 | 21495 | 21642 | 492 | 443 | 21685 | 21636 | 21703 | 21654 | 119 | 70 | 21305 | 21256 | 106 | 57 | 21299 | 21838 | 688 | 639 | 21881 | 21832 | 731 | 682 |
21606 | 21753 | 407 | 554 | 21600 | 21747 | 401 | 352 | 21398 | 21545 | 199 | 346 | 224 | 371 | 21802 | 21949 | 603 | 750 | 21796 | 21943 | 597 | 156 | 21202 | 21349 | 3 | 150 | 21196 | 21343 |
21508 | 21459 | 309 | 260 | 21502 | 21453 | 303 | 450 | 21692 | 21643 | 493 | 444 | 518 | 469 | 21312 | 21263 | 113 | 64 | 21306 | 21257 | 107 | 646 | 21888 | 21839 | 689 | 640 | 21882 | 21833 |
For all levels and check if all numbers are in the magic cube and addition of the numbers give the right magic sum, see download below.
With method composite 1 you use a magic square to construct a magic cube. See on this website the construction of:
3x3x3 (simple), 4x4x4 (most perfect), 5x5x5 (pantriagonal), 7x7x7 (pantriagonal),
9x9x9 (pandiagonal & compact), 12x12x12 (diagonal), 12x12x12 (pantriagonal),
15x15x15 (pandiagonal & compact), 16x16x16 (Nasik)a, 16x16x16 (Nasik)b,
20x20x20 (diagonal), 20x20x20 (pantriagonal), 24x24x24 (diagonal), 24x24x24
(pantriagonal), 28x28x28 (diagonal), 28x28x28 (pantriagonal)