It is possible to reconstruct a 7x7x7 (pan)diagonal magic cube, using the numbers 1 up to 448 in stead of 1 up to 7 in the third grid, and getting a 28x28x28 diagonal magic cube.
N.B.: Dividing the magic sum of the 28x28x28 magic cube by 4 you get 1571.5, so it is not possible to get 64 proportional 7x7x7 diagonal magic cubes. In stead we use 4 different magic sums (1567, 1568, 1575 and 1576).
1 | 128 | 129 | 256 | 257 | 348 | 448 | 1567 | |
2 | 127 | 130 | 255 | 258 | 349 | 447 | 1568 | |
3 | 126 | 131 | 254 | 259 | 350 | 444 | 1567 | |
4 | 125 | 132 | 253 | 260 | 352 | 442 | 1568 | |
5 | 124 | 133 | 252 | 261 | 351 | 441 | 1567 | |
6 | 123 | 134 | 251 | 262 | 346 | 446 | 1568 | |
7 | 122 | 135 | 250 | 263 | 345 | 445 | 1567 | |
8 | 121 | 136 | 249 | 264 | 347 | 443 | 1568 | |
9 | 120 | 137 | 248 | 265 | 356 | 440 | 1575 | |
10 | 119 | 138 | 247 | 266 | 357 | 439 | 1576 | |
11 | 118 | 139 | 246 | 267 | 358 | 436 | 1575 | |
12 | 117 | 140 | 245 | 268 | 360 | 434 | 1576 | |
13 | 116 | 141 | 244 | 269 | 359 | 433 | 1575 | |
14 | 115 | 142 | 243 | 270 | 354 | 438 | 1576 | |
15 | 114 | 143 | 242 | 271 | 353 | 437 | 1575 | |
16 | 113 | 144 | 241 | 272 | 355 | 435 | 1576 | |
17 | 112 | 145 | 240 | 273 | 364 | 416 | 1567 | |
18 | 111 | 146 | 239 | 274 | 365 | 415 | 1568 | |
19 | 110 | 147 | 238 | 275 | 366 | 412 | 1567 | |
20 | 109 | 148 | 237 | 276 | 368 | 410 | 1568 | |
21 | 108 | 149 | 236 | 277 | 367 | 409 | 1567 | |
22 | 107 | 150 | 235 | 278 | 362 | 414 | 1568 | |
23 | 106 | 151 | 234 | 279 | 361 | 413 | 1567 | |
24 | 105 | 152 | 233 | 280 | 363 | 411 | 1568 | |
25 | 104 | 153 | 232 | 281 | 380 | 400 | 1575 | |
26 | 103 | 154 | 231 | 282 | 381 | 399 | 1576 | |
27 | 102 | 155 | 230 | 283 | 382 | 396 | 1575 | |
28 | 101 | 156 | 229 | 284 | 384 | 394 | 1576 | |
29 | 100 | 157 | 228 | 285 | 383 | 393 | 1575 | |
30 | 99 | 158 | 227 | 286 | 378 | 398 | 1576 | |
31 | 98 | 159 | 226 | 287 | 377 | 397 | 1575 | |
32 | 97 | 160 | 225 | 288 | 379 | 395 | 1576 | |
33 | 96 | 161 | 224 | 289 | 372 | 392 | 1567 | |
34 | 95 | 162 | 223 | 290 | 373 | 391 | 1568 | |
35 | 94 | 163 | 222 | 291 | 374 | 388 | 1567 | |
36 | 93 | 164 | 221 | 292 | 376 | 386 | 1568 | |
37 | 92 | 165 | 220 | 293 | 375 | 385 | 1567 | |
38 | 91 | 166 | 219 | 294 | 370 | 390 | 1568 | |
39 | 90 | 167 | 218 | 295 | 369 | 389 | 1567 | |
40 | 89 | 168 | 217 | 296 | 371 | 387 | 1568 | |
41 | 88 | 169 | 216 | 297 | 332 | 432 | 1575 | |
42 | 87 | 170 | 215 | 298 | 333 | 431 | 1576 | |
43 | 86 | 171 | 214 | 299 | 334 | 428 | 1575 | |
44 | 85 | 172 | 213 | 300 | 336 | 426 | 1576 | |
45 | 84 | 173 | 212 | 301 | 335 | 425 | 1575 | |
46 | 83 | 174 | 211 | 302 | 330 | 430 | 1576 | |
47 | 82 | 175 | 210 | 303 | 329 | 429 | 1575 | |
48 | 81 | 176 | 209 | 304 | 331 | 427 | 1576 | |
49 | 80 | 177 | 208 | 305 | 324 | 424 | 1567 | |
50 | 79 | 178 | 207 | 306 | 325 | 423 | 1568 | |
51 | 78 | 179 | 206 | 307 | 326 | 420 | 1567 | |
52 | 77 | 180 | 205 | 308 | 328 | 418 | 1568 | |
53 | 76 | 181 | 204 | 309 | 327 | 417 | 1567 | |
54 | 75 | 182 | 203 | 310 | 322 | 422 | 1568 | |
55 | 74 | 183 | 202 | 311 | 321 | 421 | 1567 | |
56 | 73 | 184 | 201 | 312 | 323 | 419 | 1568 | |
57 | 72 | 185 | 200 | 313 | 340 | 408 | 1575 | |
58 | 71 | 186 | 199 | 314 | 341 | 407 | 1576 | |
59 | 70 | 187 | 198 | 315 | 342 | 404 | 1575 | |
60 | 69 | 188 | 197 | 316 | 344 | 402 | 1576 | |
61 | 68 | 189 | 196 | 317 | 343 | 401 | 1575 | |
62 | 67 | 190 | 195 | 318 | 338 | 406 | 1576 | |
63 | 66 | 191 | 194 | 319 | 337 | 405 | 1575 | |
64 | 65 | 192 | 193 | 320 | 339 | 403 | 1576 |
We put the 7x7x7 diagonal magic cubes in the following sequence (so we get the right magic sum in the rows/columns/diagonals in the levels and the pillar/diagonals through the levels):
1568 | 1567 | 1576 | 1575 |
1567 | 1575 | 1568 | 1576 |
1576 | 1568 | 1575 | 1567 |
1575 | 1576 | 1567 | 1568 |
1567 | 1575 | 1568 | 1576 |
1575 | 1576 | 1567 | 1568 |
1568 | 1567 | 1576 | 1575 |
1576 | 1568 | 1575 | 1567 |
1576 | 1568 | 1575 | 1567 |
1568 | 1567 | 1576 | 1575 |
1575 | 1576 | 1567 | 1568 |
1567 | 1575 | 1568 | 1576 |
1575 | 1576 | 1567 | 1568 |
1576 | 1568 | 1575 | 1567 |
1567 | 1575 | 1568 | 1576 |
1568 | 1567 | 1576 | 1575 |
See below the grids and result of level 1.
Take 1x number from first grid +1 [level 1]
3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 |
1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 |
5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 |
2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 |
6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 |
3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 |
1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 |
5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 |
2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 |
6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 |
3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 |
1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 |
5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 |
2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 |
6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 |
3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 |
1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 |
5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 |
2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 |
6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 |
+7x number from second grid [level 1]
6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 |
2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 |
5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 |
1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 |
4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 |
6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 |
2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 |
5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 |
1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 |
4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 |
6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 |
2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 |
5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 |
1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 |
4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 |
6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 |
2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 |
5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 |
1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 |
4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 2 |
+ 49x (number -/- 1) from third grid [level 1]
4 | 125 | 132 | 253 | 260 | 352 | 442 | 3 | 126 | 131 | 254 | 259 | 350 | 444 | 10 | 119 | 138 | 247 | 266 | 357 | 439 | 337 | 405 | 63 | 66 | 191 | 194 | 319 |
253 | 260 | 352 | 442 | 4 | 125 | 132 | 254 | 259 | 350 | 444 | 3 | 126 | 131 | 247 | 266 | 357 | 439 | 10 | 119 | 138 | 66 | 191 | 194 | 319 | 337 | 405 | 63 |
442 | 4 | 125 | 132 | 253 | 260 | 352 | 444 | 3 | 126 | 131 | 254 | 259 | 350 | 439 | 10 | 119 | 138 | 247 | 266 | 357 | 319 | 337 | 405 | 63 | 66 | 191 | 194 |
132 | 253 | 260 | 352 | 442 | 4 | 125 | 131 | 254 | 259 | 350 | 444 | 3 | 126 | 138 | 247 | 266 | 357 | 439 | 10 | 119 | 63 | 66 | 191 | 194 | 319 | 337 | 405 |
352 | 442 | 4 | 125 | 132 | 253 | 260 | 350 | 444 | 3 | 126 | 131 | 254 | 259 | 357 | 439 | 10 | 119 | 138 | 247 | 266 | 194 | 319 | 337 | 405 | 63 | 66 | 191 |
125 | 132 | 253 | 260 | 352 | 442 | 4 | 126 | 131 | 254 | 259 | 350 | 444 | 3 | 119 | 138 | 247 | 266 | 357 | 439 | 10 | 405 | 63 | 66 | 191 | 194 | 319 | 337 |
260 | 352 | 442 | 4 | 125 | 132 | 253 | 259 | 350 | 444 | 3 | 126 | 131 | 254 | 266 | 357 | 439 | 10 | 119 | 138 | 247 | 191 | 194 | 319 | 337 | 405 | 63 | 66 |
5 | 124 | 133 | 252 | 261 | 351 | 441 | 9 | 120 | 137 | 248 | 265 | 356 | 440 | 6 | 123 | 134 | 251 | 262 | 346 | 446 | 12 | 117 | 140 | 245 | 268 | 360 | 434 |
252 | 261 | 351 | 441 | 5 | 124 | 133 | 248 | 265 | 356 | 440 | 9 | 120 | 137 | 251 | 262 | 346 | 446 | 6 | 123 | 134 | 245 | 268 | 360 | 434 | 12 | 117 | 140 |
441 | 5 | 124 | 133 | 252 | 261 | 351 | 440 | 9 | 120 | 137 | 248 | 265 | 356 | 446 | 6 | 123 | 134 | 251 | 262 | 346 | 434 | 12 | 117 | 140 | 245 | 268 | 360 |
133 | 252 | 261 | 351 | 441 | 5 | 124 | 137 | 248 | 265 | 356 | 440 | 9 | 120 | 134 | 251 | 262 | 346 | 446 | 6 | 123 | 140 | 245 | 268 | 360 | 434 | 12 | 117 |
351 | 441 | 5 | 124 | 133 | 252 | 261 | 356 | 440 | 9 | 120 | 137 | 248 | 265 | 346 | 446 | 6 | 123 | 134 | 251 | 262 | 360 | 434 | 12 | 117 | 140 | 245 | 268 |
124 | 133 | 252 | 261 | 351 | 441 | 5 | 120 | 137 | 248 | 265 | 356 | 440 | 9 | 123 | 134 | 251 | 262 | 346 | 446 | 6 | 117 | 140 | 245 | 268 | 360 | 434 | 12 |
261 | 351 | 441 | 5 | 124 | 133 | 252 | 265 | 356 | 440 | 9 | 120 | 137 | 248 | 262 | 346 | 446 | 6 | 123 | 134 | 251 | 268 | 360 | 434 | 12 | 117 | 140 | 245 |
14 | 115 | 142 | 243 | 270 | 354 | 438 | 8 | 121 | 136 | 249 | 264 | 347 | 443 | 11 | 118 | 139 | 246 | 267 | 358 | 436 | 7 | 122 | 135 | 250 | 263 | 345 | 445 |
243 | 270 | 354 | 438 | 14 | 115 | 142 | 249 | 264 | 347 | 443 | 8 | 121 | 136 | 246 | 267 | 358 | 436 | 11 | 118 | 139 | 250 | 263 | 345 | 445 | 7 | 122 | 135 |
438 | 14 | 115 | 142 | 243 | 270 | 354 | 443 | 8 | 121 | 136 | 249 | 264 | 347 | 436 | 11 | 118 | 139 | 246 | 267 | 358 | 445 | 7 | 122 | 135 | 250 | 263 | 345 |
142 | 243 | 270 | 354 | 438 | 14 | 115 | 136 | 249 | 264 | 347 | 443 | 8 | 121 | 139 | 246 | 267 | 358 | 436 | 11 | 118 | 135 | 250 | 263 | 345 | 445 | 7 | 122 |
354 | 438 | 14 | 115 | 142 | 243 | 270 | 347 | 443 | 8 | 121 | 136 | 249 | 264 | 358 | 436 | 11 | 118 | 139 | 246 | 267 | 345 | 445 | 7 | 122 | 135 | 250 | 263 |
115 | 142 | 243 | 270 | 354 | 438 | 14 | 121 | 136 | 249 | 264 | 347 | 443 | 8 | 118 | 139 | 246 | 267 | 358 | 436 | 11 | 122 | 135 | 250 | 263 | 345 | 445 | 7 |
270 | 354 | 438 | 14 | 115 | 142 | 243 | 264 | 347 | 443 | 8 | 121 | 136 | 249 | 267 | 358 | 436 | 11 | 118 | 139 | 246 | 263 | 345 | 445 | 7 | 122 | 135 | 250 |
13 | 116 | 141 | 244 | 269 | 359 | 433 | 16 | 113 | 144 | 241 | 272 | 355 | 435 | 17 | 112 | 145 | 240 | 273 | 364 | 416 | 18 | 111 | 146 | 239 | 274 | 365 | 415 |
244 | 269 | 359 | 433 | 13 | 116 | 141 | 241 | 272 | 355 | 435 | 16 | 113 | 144 | 240 | 273 | 364 | 416 | 17 | 112 | 145 | 239 | 274 | 365 | 415 | 18 | 111 | 146 |
433 | 13 | 116 | 141 | 244 | 269 | 359 | 435 | 16 | 113 | 144 | 241 | 272 | 355 | 416 | 17 | 112 | 145 | 240 | 273 | 364 | 415 | 18 | 111 | 146 | 239 | 274 | 365 |
141 | 244 | 269 | 359 | 433 | 13 | 116 | 144 | 241 | 272 | 355 | 435 | 16 | 113 | 145 | 240 | 273 | 364 | 416 | 17 | 112 | 146 | 239 | 274 | 365 | 415 | 18 | 111 |
359 | 433 | 13 | 116 | 141 | 244 | 269 | 355 | 435 | 16 | 113 | 144 | 241 | 272 | 364 | 416 | 17 | 112 | 145 | 240 | 273 | 365 | 415 | 18 | 111 | 146 | 239 | 274 |
116 | 141 | 244 | 269 | 359 | 433 | 13 | 113 | 144 | 241 | 272 | 355 | 435 | 16 | 112 | 145 | 240 | 273 | 364 | 416 | 17 | 111 | 146 | 239 | 274 | 365 | 415 | 18 |
269 | 359 | 433 | 13 | 116 | 141 | 244 | 272 | 355 | 435 | 16 | 113 | 144 | 241 | 273 | 364 | 416 | 17 | 112 | 145 | 240 | 274 | 365 | 415 | 18 | 111 | 146 | 239 |
= 28x28x28 diagonal magic cube [level 1]
193 | 6081 | 6432 | 12369 | 12713 | 17229 | 21647 | 144 | 6130 | 6383 | 12418 | 12664 | 17131 | 21745 | 487 | 5787 | 6726 | 12075 | 13007 | 17474 | 21500 | 16510 | 19801 | 3051 | 3206 | 9332 | 9487 | 15620 |
12363 | 12714 | 17230 | 21648 | 194 | 6082 | 6433 | 12412 | 12665 | 17132 | 21746 | 145 | 6131 | 6384 | 12069 | 13008 | 17475 | 21501 | 488 | 5788 | 6727 | 3200 | 9333 | 9488 | 15621 | 16511 | 19802 | 3052 |
21649 | 195 | 6083 | 6427 | 12364 | 12715 | 17231 | 21747 | 146 | 6132 | 6378 | 12413 | 12666 | 17133 | 21502 | 489 | 5789 | 6721 | 12070 | 13009 | 17476 | 15622 | 16512 | 19803 | 3046 | 3201 | 9334 | 9489 |
6428 | 12365 | 12716 | 17232 | 21650 | 196 | 6077 | 6379 | 12414 | 12667 | 17134 | 21748 | 147 | 6126 | 6722 | 12071 | 13010 | 17477 | 21503 | 490 | 5783 | 3047 | 3202 | 9335 | 9490 | 15623 | 16513 | 19797 |
17233 | 21651 | 190 | 6078 | 6429 | 12366 | 12717 | 17135 | 21749 | 141 | 6127 | 6380 | 12415 | 12668 | 17478 | 21504 | 484 | 5784 | 6723 | 12072 | 13011 | 9491 | 15624 | 16507 | 19798 | 3048 | 3203 | 9336 |
6079 | 6430 | 12367 | 12718 | 17234 | 21645 | 191 | 6128 | 6381 | 12416 | 12669 | 17136 | 21743 | 142 | 5785 | 6724 | 12073 | 13012 | 17479 | 21498 | 485 | 19799 | 3049 | 3204 | 9337 | 9492 | 15618 | 16508 |
12719 | 17228 | 21646 | 192 | 6080 | 6431 | 12368 | 12670 | 17130 | 21744 | 143 | 6129 | 6382 | 12417 | 13013 | 17473 | 21499 | 486 | 5786 | 6725 | 12074 | 9338 | 9486 | 15619 | 16509 | 19800 | 3050 | 3205 |
242 | 6032 | 6481 | 12320 | 12762 | 17180 | 21598 | 438 | 5836 | 6677 | 12124 | 12958 | 17425 | 21549 | 291 | 5983 | 6530 | 12271 | 12811 | 16935 | 21843 | 585 | 5689 | 6824 | 11977 | 13105 | 17621 | 21255 |
12314 | 12763 | 17181 | 21599 | 243 | 6033 | 6482 | 12118 | 12959 | 17426 | 21550 | 439 | 5837 | 6678 | 12265 | 12812 | 16936 | 21844 | 292 | 5984 | 6531 | 11971 | 13106 | 17622 | 21256 | 586 | 5690 | 6825 |
21600 | 244 | 6034 | 6476 | 12315 | 12764 | 17182 | 21551 | 440 | 5838 | 6672 | 12119 | 12960 | 17427 | 21845 | 293 | 5985 | 6525 | 12266 | 12813 | 16937 | 21257 | 587 | 5691 | 6819 | 11972 | 13107 | 17623 |
6477 | 12316 | 12765 | 17183 | 21601 | 245 | 6028 | 6673 | 12120 | 12961 | 17428 | 21552 | 441 | 5832 | 6526 | 12267 | 12814 | 16938 | 21846 | 294 | 5979 | 6820 | 11973 | 13108 | 17624 | 21258 | 588 | 5685 |
17184 | 21602 | 239 | 6029 | 6478 | 12317 | 12766 | 17429 | 21553 | 435 | 5833 | 6674 | 12121 | 12962 | 16939 | 21847 | 288 | 5980 | 6527 | 12268 | 12815 | 17625 | 21259 | 582 | 5686 | 6821 | 11974 | 13109 |
6030 | 6479 | 12318 | 12767 | 17185 | 21596 | 240 | 5834 | 6675 | 12122 | 12963 | 17430 | 21547 | 436 | 5981 | 6528 | 12269 | 12816 | 16940 | 21841 | 289 | 5687 | 6822 | 11975 | 13110 | 17626 | 21253 | 583 |
12768 | 17179 | 21597 | 241 | 6031 | 6480 | 12319 | 12964 | 17424 | 21548 | 437 | 5835 | 6676 | 12123 | 12817 | 16934 | 21842 | 290 | 5982 | 6529 | 12270 | 13111 | 17620 | 21254 | 584 | 5688 | 6823 | 11976 |
683 | 5591 | 6922 | 11879 | 13203 | 17327 | 21451 | 389 | 5885 | 6628 | 12173 | 12909 | 16984 | 21696 | 536 | 5738 | 6775 | 12026 | 13056 | 17523 | 21353 | 340 | 5934 | 6579 | 12222 | 12860 | 16886 | 21794 |
11873 | 13204 | 17328 | 21452 | 684 | 5592 | 6923 | 12167 | 12910 | 16985 | 21697 | 390 | 5886 | 6629 | 12020 | 13057 | 17524 | 21354 | 537 | 5739 | 6776 | 12216 | 12861 | 16887 | 21795 | 341 | 5935 | 6580 |
21453 | 685 | 5593 | 6917 | 11874 | 13205 | 17329 | 21698 | 391 | 5887 | 6623 | 12168 | 12911 | 16986 | 21355 | 538 | 5740 | 6770 | 12021 | 13058 | 17525 | 21796 | 342 | 5936 | 6574 | 12217 | 12862 | 16888 |
6918 | 11875 | 13206 | 17330 | 21454 | 686 | 5587 | 6624 | 12169 | 12912 | 16987 | 21699 | 392 | 5881 | 6771 | 12022 | 13059 | 17526 | 21356 | 539 | 5734 | 6575 | 12218 | 12863 | 16889 | 21797 | 343 | 5930 |
17331 | 21455 | 680 | 5588 | 6919 | 11876 | 13207 | 16988 | 21700 | 386 | 5882 | 6625 | 12170 | 12913 | 17527 | 21357 | 533 | 5735 | 6772 | 12023 | 13060 | 16890 | 21798 | 337 | 5931 | 6576 | 12219 | 12864 |
5589 | 6920 | 11877 | 13208 | 17332 | 21449 | 681 | 5883 | 6626 | 12171 | 12914 | 16989 | 21694 | 387 | 5736 | 6773 | 12024 | 13061 | 17528 | 21351 | 534 | 5932 | 6577 | 12220 | 12865 | 16891 | 21792 | 338 |
13209 | 17326 | 21450 | 682 | 5590 | 6921 | 11878 | 12915 | 16983 | 21695 | 388 | 5884 | 6627 | 12172 | 13062 | 17522 | 21352 | 535 | 5737 | 6774 | 12025 | 12866 | 16885 | 21793 | 339 | 5933 | 6578 | 12221 |
634 | 5640 | 6873 | 11928 | 13154 | 17572 | 21206 | 781 | 5493 | 7020 | 11781 | 13301 | 17376 | 21304 | 830 | 5444 | 7069 | 11732 | 13350 | 17817 | 20373 | 879 | 5395 | 7118 | 11683 | 13399 | 17866 | 20324 |
11922 | 13155 | 17573 | 21207 | 635 | 5641 | 6874 | 11775 | 13302 | 17377 | 21305 | 782 | 5494 | 7021 | 11726 | 13351 | 17818 | 20374 | 831 | 5445 | 7070 | 11677 | 13400 | 17867 | 20325 | 880 | 5396 | 7119 |
21208 | 636 | 5642 | 6868 | 11923 | 13156 | 17574 | 21306 | 783 | 5495 | 7015 | 11776 | 13303 | 17378 | 20375 | 832 | 5446 | 7064 | 11727 | 13352 | 17819 | 20326 | 881 | 5397 | 7113 | 11678 | 13401 | 17868 |
6869 | 11924 | 13157 | 17575 | 21209 | 637 | 5636 | 7016 | 11777 | 13304 | 17379 | 21307 | 784 | 5489 | 7065 | 11728 | 13353 | 17820 | 20376 | 833 | 5440 | 7114 | 11679 | 13402 | 17869 | 20327 | 882 | 5391 |
17576 | 21210 | 631 | 5637 | 6870 | 11925 | 13158 | 17380 | 21308 | 778 | 5490 | 7017 | 11778 | 13305 | 17821 | 20377 | 827 | 5441 | 7066 | 11729 | 13354 | 17870 | 20328 | 876 | 5392 | 7115 | 11680 | 13403 |
5638 | 6871 | 11926 | 13159 | 17577 | 21204 | 632 | 5491 | 7018 | 11779 | 13306 | 17381 | 21302 | 779 | 5442 | 7067 | 11730 | 13355 | 17822 | 20371 | 828 | 5393 | 7116 | 11681 | 13404 | 17871 | 20322 | 877 |
13160 | 17571 | 21205 | 633 | 5639 | 6872 | 11927 | 13307 | 17375 | 21303 | 780 | 5492 | 7019 | 11780 | 13356 | 17816 | 20372 | 829 | 5443 | 7068 | 11731 | 13405 | 17865 | 20323 | 878 | 5394 | 7117 | 11682 |
See for all levels and check if all numbers are in the magic cube and addition of the numbers give the right magic sum, the download below.
With method composite 2' you use 2x2x2x, 3x3x3x, 4x4x4x, ... a proportional magic cube to construct a 2x, 3x, 4x, ... as big magic cube. See on this website the construction of:
14x14x14 (simple), 20x20x20 (diagonal), 28x28x28 (diagonal) and 30x30x30 (diagonal)