Diagonal 30x30x30 magic cube (Composite 3')

 

Take as first grid a (simple) 3x3x3 magic cube and its inverse and as second grid a 3x3x3 'blown up' diagonal 10x10x10 magic cube. See below the grids and the result of level 1.

 

 

Take 1x number from first grid with 3x3x3 magic cube and its inverse [level 1]

8 15 19 20 13 9 20 13 9 8 15 19 20 13 9 8 15 19 20 13 9 8 15 19 8 15 19 20 13 9
12 25 5 16 3 23 16 3 23 12 25 5 16 3 23 12 25 5 16 3 23 12 25 5 12 25 5 16 3 23
22 2 18 6 26 10 6 26 10 22 2 18 6 26 10 22 2 18 6 26 10 22 2 18 22 2 18 6 26 10
20 13 9 8 15 19 20 13 9 8 15 19 20 13 9 8 15 19 20 13 9 8 15 19 20 13 9 8 15 19
16 3 23 12 25 5 16 3 23 12 25 5 16 3 23 12 25 5 16 3 23 12 25 5 16 3 23 12 25 5
6 26 10 22 2 18 6 26 10 22 2 18 6 26 10 22 2 18 6 26 10 22 2 18 6 26 10 22 2 18
8 15 19 20 13 9 8 15 19 20 13 9 8 15 19 20 13 9 8 15 19 20 13 9 8 15 19 20 13 9
12 25 5 16 3 23 12 25 5 16 3 23 12 25 5 16 3 23 12 25 5 16 3 23 12 25 5 16 3 23
22 2 18 6 26 10 22 2 18 6 26 10 22 2 18 6 26 10 22 2 18 6 26 10 22 2 18 6 26 10
20 13 9 20 13 9 20 13 9 8 15 19 20 13 9 8 15 19 20 13 9 8 15 19 8 15 19 8 15 19
16 3 23 16 3 23 16 3 23 12 25 5 16 3 23 12 25 5 16 3 23 12 25 5 12 25 5 12 25 5
6 26 10 6 26 10 6 26 10 22 2 18 6 26 10 22 2 18 6 26 10 22 2 18 22 2 18 22 2 18
8 15 19 20 13 9 8 15 19 20 13 9 8 15 19 20 13 9 8 15 19 20 13 9 8 15 19 20 13 9
12 25 5 16 3 23 12 25 5 16 3 23 12 25 5 16 3 23 12 25 5 16 3 23 12 25 5 16 3 23
22 2 18 6 26 10 22 2 18 6 26 10 22 2 18 6 26 10 22 2 18 6 26 10 22 2 18 6 26 10
20 13 9 8 15 19 20 13 9 20 13 9 8 15 19 20 13 9 8 15 19 8 15 19 20 13 9 8 15 19
16 3 23 12 25 5 16 3 23 16 3 23 12 25 5 16 3 23 12 25 5 12 25 5 16 3 23 12 25 5
6 26 10 22 2 18 6 26 10 6 26 10 22 2 18 6 26 10 22 2 18 22 2 18 6 26 10 22 2 18
8 15 19 8 15 19 20 13 9 8 15 19 20 13 9 8 15 19 20 13 9 8 15 19 20 13 9 20 13 9
12 25 5 12 25 5 16 3 23 12 25 5 16 3 23 12 25 5 16 3 23 12 25 5 16 3 23 16 3 23
22 2 18 22 2 18 6 26 10 22 2 18 6 26 10 22 2 18 6 26 10 22 2 18 6 26 10 6 26 10
20 13 9 20 13 9 8 15 19 8 15 19 20 13 9 8 15 19 20 13 9 20 13 9 8 15 19 8 15 19
16 3 23 16 3 23 12 25 5 12 25 5 16 3 23 12 25 5 16 3 23 16 3 23 12 25 5 12 25 5
6 26 10 6 26 10 22 2 18 22 2 18 6 26 10 22 2 18 6 26 10 6 26 10 22 2 18 22 2 18
20 13 9 8 15 19 8 15 19 20 13 9 8 15 19 20 13 9 8 15 19 20 13 9 20 13 9 8 15 19
16 3 23 12 25 5 12 25 5 16 3 23 12 25 5 16 3 23 12 25 5 16 3 23 16 3 23 12 25 5
6 26 10 22 2 18 22 2 18 6 26 10 22 2 18 6 26 10 22 2 18 6 26 10 6 26 10 22 2 18
8 15 19 8 15 19 8 15 19 20 13 9 8 15 19 20 13 9 8 15 19 20 13 9 20 13 9 20 13 9
12 25 5 12 25 5 12 25 5 16 3 23 12 25 5 16 3 23 12 25 5 16 3 23 16 3 23 16 3 23
22 2 18 22 2 18 22 2 18 6 26 10 22 2 18 6 26 10 22 2 18 6 26 10 6 26 10 6 26 10

 

 

+ 27x (number -/- 1) from second grid with 3x3x3 'blown up' diagonal 10x10x10 [level 1]

1 1 1 92 92 92 93 93 93 904 904 904 996 996 996 905 905 905 907 907 907 98 98 98 999 999 999 10 10 10
1 1 1 92 92 92 93 93 93 904 904 904 996 996 996 905 905 905 907 907 907 98 98 98 999 999 999 10 10 10
1 1 1 92 92 92 93 93 93 904 904 904 996 996 996 905 905 905 907 907 907 98 98 98 999 999 999 10 10 10
971 971 971 922 922 922 923 923 923 27 27 27 75 75 75 76 76 76 74 74 74 28 28 28 929 929 929 980 980 980
971 971 971 922 922 922 923 923 923 27 27 27 75 75 75 76 76 76 74 74 74 28 28 28 929 929 929 980 980 980
971 971 971 922 922 922 923 923 923 27 27 27 75 75 75 76 76 76 74 74 74 28 28 28 929 929 929 980 980 980
90 90 90 12 12 12 913 913 913 84 84 84 986 986 986 915 915 915 87 87 87 918 918 918 919 919 919 81 81 81
90 90 90 12 12 12 913 913 913 84 84 84 986 986 986 915 915 915 87 87 87 918 918 918 919 919 919 81 81 81
90 90 90 12 12 12 913 913 913 84 84 84 986 986 986 915 915 915 87 87 87 918 918 918 919 919 919 81 81 81
931 931 931 962 962 962 968 968 968 934 934 934 65 65 65 36 36 36 37 37 37 63 63 63 69 69 69 940 940 940
931 931 931 962 962 962 968 968 968 934 934 934 65 65 65 36 36 36 37 37 37 63 63 63 69 69 69 940 940 940
931 931 931 962 962 962 968 968 968 934 934 934 65 65 65 36 36 36 37 37 37 63 63 63 69 69 69 940 940 940
60 60 60 59 59 59 958 958 958 957 957 957 45 45 45 946 946 946 954 954 954 943 943 943 42 42 42 41 41 41
60 60 60 59 59 59 958 958 958 957 957 957 45 45 45 946 946 946 954 954 954 943 943 943 42 42 42 41 41 41
60 60 60 59 59 59 958 958 958 957 957 957 45 45 45 946 946 946 954 954 954 943 943 943 42 42 42 41 41 41
950 950 950 49 49 49 48 48 48 947 947 947 955 955 955 56 56 56 944 944 944 53 53 53 52 52 52 951 951 951
950 950 950 49 49 49 48 48 48 947 947 947 955 955 955 56 56 56 944 944 944 53 53 53 52 52 52 951 951 951
950 950 950 49 49 49 48 48 48 947 947 947 955 955 955 56 56 56 944 944 944 53 53 53 52 52 52 951 951 951
961 961 961 939 939 939 38 38 38 64 64 64 35 35 35 66 66 66 967 967 967 933 933 933 32 32 32 970 970 970
961 961 961 939 939 939 38 38 38 64 64 64 35 35 35 66 66 66 967 967 967 933 933 933 32 32 32 970 970 970
961 961 961 939 939 939 38 38 38 64 64 64 35 35 35 66 66 66 967 967 967 933 933 933 32 32 32 970 970 970
930 930 930 979 979 979 73 73 73 77 77 77 26 26 26 25 25 25 24 24 24 978 978 978 972 972 972 921 921 921
930 930 930 979 979 979 73 73 73 77 77 77 26 26 26 25 25 25 24 24 24 978 978 978 972 972 972 921 921 921
930 930 930 979 979 979 73 73 73 77 77 77 26 26 26 25 25 25 24 24 24 978 978 978 972 972 972 921 921 921
20 20 20 982 982 982 983 983 983 17 17 17 916 916 916 985 985 985 14 14 14 988 988 988 89 89 89 11 11 11
20 20 20 982 982 982 983 983 983 17 17 17 916 916 916 985 985 985 14 14 14 988 988 988 89 89 89 11 11 11
20 20 20 982 982 982 983 983 983 17 17 17 916 916 916 985 985 985 14 14 14 988 988 988 89 89 89 11 11 11
91 91 91 9 9 9 8 8 8 994 994 994 906 906 906 995 995 995 997 997 997 3 3 3 902 902 902 100 100 100
91 91 91 9 9 9 8 8 8 994 994 994 906 906 906 995 995 995 997 997 997 3 3 3 902 902 902 100 100 100
91 91 91 9 9 9 8 8 8 994 994 994 906 906 906 995 995 995 997 997 997 3 3 3 902 902 902 100 100 100

 

 

= 30x30x30 diagonal magic cube [level 1]

8 15 19 2477 2470 2466 2504 2497 2493 24389 24396 24400 26885 26878 26874 24416 24423 24427 24482 24475 24471 2627 2634 2638 26954 26961 26965 263 256 252
12 25 5 2473 2460 2480 2500 2487 2507 24393 24406 24386 26881 26868 26888 24420 24433 24413 24478 24465 24485 2631 2644 2624 26958 26971 26951 259 246 266
22 2 18 2463 2483 2467 2490 2510 2494 24403 24383 24399 26871 26891 26875 24430 24410 24426 24468 24488 24472 2641 2621 2637 26968 26948 26964 249 269 253
26210 26203 26199 24875 24882 24886 24914 24907 24903 710 717 721 2018 2011 2007 2033 2040 2044 1991 1984 1980 737 744 748 25076 25069 25065 26441 26448 26452
26206 26193 26213 24879 24892 24872 24910 24897 24917 714 727 707 2014 2001 2021 2037 2050 2030 1987 1974 1994 741 754 734 25072 25059 25079 26445 26458 26438
26196 26216 26200 24889 24869 24885 24900 24920 24904 724 704 720 2004 2024 2008 2047 2027 2043 1977 1997 1981 751 731 747 25062 25082 25066 26455 26435 26451
2411 2418 2422 317 310 306 24632 24639 24643 2261 2254 2250 26603 26610 26614 24698 24691 24687 2330 2337 2341 24779 24772 24768 24794 24801 24805 2180 2173 2169
2415 2428 2408 313 300 320 24636 24649 24629 2257 2244 2264 26607 26620 26600 24694 24681 24701 2334 2347 2327 24775 24762 24782 24798 24811 24791 2176 2163 2183
2425 2405 2421 303 323 307 24646 24626 24642 2247 2267 2251 26617 26597 26613 24684 24704 24688 2344 2324 2340 24765 24785 24769 24808 24788 24804 2166 2186 2170
25130 25123 25119 25967 25960 25956 26129 26122 26118 25199 25206 25210 1748 1741 1737 953 960 964 992 985 981 1682 1689 1693 1844 1851 1855 25361 25368 25372
25126 25113 25133 25963 25950 25970 26125 26112 26132 25203 25216 25196 1744 1731 1751 957 970 950 988 975 995 1686 1699 1679 1848 1861 1841 25365 25378 25358
25116 25136 25120 25953 25973 25957 26115 26135 26119 25213 25193 25209 1734 1754 1738 967 947 963 978 998 982 1696 1676 1692 1858 1838 1854 25375 25355 25371
1601 1608 1612 1586 1579 1575 25847 25854 25858 25832 25825 25821 1196 1203 1207 25535 25528 25524 25739 25746 25750 25454 25447 25443 1115 1122 1126 1100 1093 1089
1605 1618 1598 1582 1569 1589 25851 25864 25844 25828 25815 25835 1200 1213 1193 25531 25518 25538 25743 25756 25736 25450 25437 25457 1119 1132 1112 1096 1083 1103
1615 1595 1611 1572 1592 1576 25861 25841 25857 25818 25838 25822 1210 1190 1206 25521 25541 25525 25753 25733 25749 25440 25460 25444 1129 1109 1125 1086 1106 1090
25643 25636 25632 1304 1311 1315 1289 1282 1278 25562 25555 25551 25766 25773 25777 1505 1498 1494 25469 25476 25480 1412 1419 1423 1397 1390 1386 25658 25665 25669
25639 25626 25646 1308 1321 1301 1285 1272 1292 25558 25545 25565 25770 25783 25763 1501 1488 1508 25473 25486 25466 1416 1429 1409 1393 1380 1400 25662 25675 25655
25629 25649 25633 1318 1298 1314 1275 1295 1279 25548 25568 25552 25780 25760 25776 1491 1511 1495 25483 25463 25479 1426 1406 1422 1383 1403 1387 25672 25652 25668
25928 25935 25939 25334 25341 25345 1019 1012 1008 1709 1716 1720 938 931 927 1763 1770 1774 26102 26095 26091 25172 25179 25183 857 850 846 26183 26176 26172
25932 25945 25925 25338 25351 25331 1015 1002 1022 1713 1726 1706 934 921 941 1767 1780 1760 26098 26085 26105 25176 25189 25169 853 840 860 26179 26166 26186
25942 25922 25938 25348 25328 25344 1005 1025 1009 1723 1703 1719 924 944 928 1777 1757 1773 26088 26108 26092 25186 25166 25182 843 863 847 26169 26189 26173
25103 25096 25092 26426 26419 26415 1952 1959 1963 2060 2067 2071 695 688 684 656 663 667 641 634 630 26399 26392 26388 26225 26232 26236 24848 24855 24859
25099 25086 25106 26422 26409 26429 1956 1969 1949 2064 2077 2057 691 678 698 660 673 653 637 624 644 26395 26382 26402 26229 26242 26222 24852 24865 24845
25089 25109 25093 26412 26432 26416 1966 1946 1962 2074 2054 2070 681 701 685 670 650 666 627 647 631 26385 26405 26389 26239 26219 26235 24862 24842 24858
533 526 522 26495 26502 26506 26522 26529 26533 452 445 441 24713 24720 24724 26588 26581 26577 359 366 370 26669 26662 26658 2396 2389 2385 278 285 289
529 516 536 26499 26512 26492 26526 26539 26519 448 435 455 24717 24730 24710 26584 26571 26591 363 376 356 26665 26652 26672 2392 2379 2399 282 295 275
519 539 523 26509 26489 26505 26536 26516 26532 438 458 442 24727 24707 24723 26574 26594 26578 373 353 369 26655 26675 26659 2382 2402 2386 292 272 288
2438 2445 2449 224 231 235 197 204 208 26831 26824 26820 24443 24450 24454 26858 26851 26847 26900 26907 26911 74 67 63 24347 24340 24336 2693 2686 2682
2442 2455 2435 228 241 221 201 214 194 26827 26814 26834 24447 24460 24440 26854 26841 26861 26904 26917 26897 70 57 77 24343 24330 24350 2689 2676 2696
2452 2432 2448 238 218 234 211 191 207 26817 26837 26821 24457 24437 24453 26844 26864 26848 26914 26894 26910 60 80 64 24333 24353 24337 2679 2699 2683

 

 

For all levels en check if all numbers are in the magic cube and addition of the numbers give the right magic sum, see download below.

 

With method composite 3' you use a 3x3x3 magic cube and its inverse or a most perfect 4x4x4 magic cube and its inverse and a 3x3x3 or 4x4x4 'blown up' pantriagonal 4x4x4 magic cube or a diagonal or pantriagonal 6x6x6 magic cube or a Nasik 8x8x8 magic cube or a diagonal 10x10x10 magic cube to construct a diagonal, pantriagonal or Nasik magic cube. See on this website the construction of:

12x12x12 (pantriagonal)18x18x18 (diagonal)18x18x18 (pantriagonal),

24x24x24 (diagonal)24x24x24 (Nasik)30x30x30 (diagonal),

30x30x30 (pantriagonal) and 32x32x32 (Nasik)

 

Download
30x30x30, diagonal (C3').xlsx
Microsoft Excel werkblad 1.9 MB