Use a specific 5x5 magic square and its row- or column grid to construct a 5x5x5 pantriagonal magic cube.
First we construct the 5x5 symmetric (but not pan)magic square.
Take 1x number from first grid
3 | 4 | 0 | 1 | 2 |
4 | 0 | 1 | 2 | 3 |
0 | 1 | 2 | 3 | 4 |
1 | 2 | 3 | 4 | 0 |
2 | 3 | 4 | 0 | 1 |
+ 5x number from second grid (= first grid turned a quarter to left)
2 | 3 | 4 | 0 | 1 |
1 | 2 | 3 | 4 | 0 |
0 | 1 | 2 | 3 | 4 |
4 | 0 | 1 | 2 | 3 |
3 | 4 | 0 | 1 | 2 |
= 5x5 symmetric magic square
18 | 24 | 5 | 6 | 12 |
22 | 3 | 9 | 15 | 16 |
1 | 7 | 13 | 19 | 25 |
10 | 11 | 17 | 23 | 4 |
14 | 20 | 21 | 2 | 8 |
We use the 5x5 magic square and its row- or column grid to construct the middle level (3) of 5x5x5 pantriagonal magic cube. The grids of the remaining levels are horizontal or vertical shifts of the grids of level 3. See below the grids and the result.
Take 1x number from first grid
65 | 65 | 65 | 65 | 65 | ||
1 | ||||||
65 | 10 | 11 | 17 | 23 | 4 | |
65 | 14 | 20 | 21 | 2 | 8 | |
65 | 18 | 24 | 5 | 6 | 12 | |
65 | 22 | 3 | 9 | 15 | 16 | |
65 | 1 | 7 | 13 | 19 | 25 | |
65 | 65 | 65 | 65 | 65 | ||
2 | ||||||
65 | 14 | 20 | 21 | 2 | 8 | |
65 | 18 | 24 | 5 | 6 | 12 | |
65 | 22 | 3 | 9 | 15 | 16 | |
65 | 1 | 7 | 13 | 19 | 25 | |
65 | 10 | 11 | 17 | 23 | 4 | |
65 | 65 | 65 | 65 | 65 | ||
3 | ||||||
65 | 18 | 24 | 5 | 6 | 12 | |
65 | 22 | 3 | 9 | 15 | 16 | |
65 | 1 | 7 | 13 | 19 | 25 | |
65 | 10 | 11 | 17 | 23 | 4 | |
65 | 14 | 20 | 21 | 2 | 8 | |
65 | 65 | 65 | 65 | 65 | ||
4 | ||||||
65 | 22 | 3 | 9 | 15 | 16 | |
65 | 1 | 7 | 13 | 19 | 25 | |
65 | 10 | 11 | 17 | 23 | 4 | |
65 | 14 | 20 | 21 | 2 | 8 | |
65 | 18 | 24 | 5 | 6 | 12 | |
65 | 65 | 65 | 65 | 65 | ||
5 | ||||||
65 | 1 | 7 | 13 | 19 | 25 | |
65 | 10 | 11 | 17 | 23 | 4 | |
65 | 14 | 20 | 21 | 2 | 8 | |
65 | 18 | 24 | 5 | 6 | 12 | |
65 | 22 | 3 | 9 | 15 | 16 |
+ 25x number from second grid
10 | 10 | 10 | 10 | 10 | ||
1 | ||||||
10 | 0 | 1 | 2 | 3 | 4 | |
10 | 1 | 2 | 3 | 4 | 0 | |
10 | 2 | 3 | 4 | 0 | 1 | |
10 | 3 | 4 | 0 | 1 | 2 | |
10 | 4 | 0 | 1 | 2 | 3 | |
10 | 10 | 10 | 10 | 10 | ||
2 | ||||||
10 | 4 | 0 | 1 | 2 | 3 | |
10 | 0 | 1 | 2 | 3 | 4 | |
10 | 1 | 2 | 3 | 4 | 0 | |
10 | 2 | 3 | 4 | 0 | 1 | |
10 | 3 | 4 | 0 | 1 | 2 | |
10 | 10 | 10 | 10 | 10 | ||
3 | ||||||
10 | 3 | 4 | 0 | 1 | 2 | |
10 | 4 | 0 | 1 | 2 | 3 | |
10 | 0 | 1 | 2 | 3 | 4 | |
10 | 1 | 2 | 3 | 4 | 0 | |
10 | 2 | 3 | 4 | 0 | 1 | |
10 | 10 | 10 | 10 | 10 | ||
4 | ||||||
10 | 2 | 3 | 4 | 0 | 1 | |
10 | 3 | 4 | 0 | 1 | 2 | |
10 | 4 | 0 | 1 | 2 | 3 | |
10 | 0 | 1 | 2 | 3 | 4 | |
10 | 1 | 2 | 3 | 4 | 0 | |
10 | 10 | 10 | 10 | 10 | ||
5 | ||||||
10 | 1 | 2 | 3 | 4 | 0 | |
10 | 2 | 3 | 4 | 0 | 1 | |
10 | 3 | 4 | 0 | 1 | 2 | |
10 | 4 | 0 | 1 | 2 | 3 | |
10 | 0 | 1 | 2 | 3 | 4 |
= 5x5x5 pantriagonal & symmetric magic cube
315 | 315 | 315 | 315 | 315 | ||
1 | ||||||
315 | 10 | 36 | 67 | 98 | 104 | |
315 | 39 | 70 | 96 | 102 | 8 | |
315 | 68 | 99 | 105 | 6 | 37 | |
315 | 97 | 103 | 9 | 40 | 66 | |
315 | 101 | 7 | 38 | 69 | 100 | |
315 | 315 | 315 | 315 | 315 | ||
2 | ||||||
315 | 114 | 20 | 46 | 52 | 83 | |
315 | 18 | 49 | 55 | 81 | 112 | |
315 | 47 | 53 | 84 | 115 | 16 | |
315 | 51 | 82 | 113 | 19 | 50 | |
315 | 85 | 111 | 17 | 48 | 54 | |
315 | 315 | 315 | 315 | 315 | ||
3 | ||||||
315 | 93 | 124 | 5 | 31 | 62 | |
315 | 122 | 3 | 34 | 65 | 91 | |
315 | 1 | 32 | 63 | 94 | 125 | |
315 | 35 | 61 | 92 | 123 | 4 | |
315 | 64 | 95 | 121 | 2 | 33 | |
315 | 315 | 315 | 315 | 315 | ||
4 | ||||||
315 | 72 | 78 | 109 | 15 | 41 | |
315 | 76 | 107 | 13 | 44 | 75 | |
315 | 110 | 11 | 42 | 73 | 79 | |
315 | 14 | 45 | 71 | 77 | 108 | |
315 | 43 | 74 | 80 | 106 | 12 | |
315 | 315 | 315 | 315 | 315 | ||
5 | ||||||
315 | 26 | 57 | 88 | 119 | 25 | |
315 | 60 | 86 | 117 | 23 | 29 | |
315 | 89 | 120 | 21 | 27 | 58 | |
315 | 118 | 24 | 30 | 56 | 87 | |
315 | 22 | 28 | 59 | 90 | 116 |
See for check if all numbers are in the magic cube and addition of the numbers give the right magic sum, the download below.
With method composite 1 you use a magic square to construct a magic cube. See on this website the construction of:
3x3x3 (simple), 4x4x4 (most perfect), 5x5x5 (pantriagonal), 7x7x7 (pantriagonal),
9x9x9 (pandiagonal & compact), 12x12x12 (diagonal), 12x12x12 (pantriagonal),
15x15x15 (pandiagonal & compact), 16x16x16 (Nasik)a, 16x16x16 (Nasik)b,
20x20x20 (diagonal), 20x20x20 (pantriagonal), 24x24x24 (diagonal), 24x24x24
(pantriagonal), 28x28x28 (diagonal), 28x28x28 (pantriagonal)