Use the same method to construct the panmagic 5x5 square (shift) to construct a symmetric & panmagic 7x7x7
cube.
Choose as first row of the first grid in the first level: 3-4-5-6-0-1-2. Construct row 2 up to 7 of the first grid of the first level by shifting the first row each time 4 places to the left. Construct the first grid of level
2 up to 7 by shifting the columns of the first grid of the first level each time 2 places to the left.
Choose as first row of the second grid in the first level: 6-0-1-2-3-4-5. Construct row 2 up to 7 of the second grid of the first level by
shifting the first row each time 4 places to the right. Construct the second grid of level 2 up to 7 by shifting the columns of the second grid
of the first level each time 2 places to the left.
The third grid is the same as the second grid, but the levels are put in reversed order (7 up to 1 instead
of 1 up to 7).
Take 1x number from first grid + 7x number from second grid + 49x number from third grid to get a symmetric & panmagic
7x7x7 cube.
1x number +1 [level 1] + 7x number [Level 1] + 49x number [Level 1] |
||||||||||||||||||||||||
3 |
4 |
5 |
6 |
0 |
1 |
2 |
6 |
0 |
1 |
2 |
3 |
4 |
5 |
4 |
5 |
6 |
0 |
1 |
2 |
3 |
||||
0 |
1 |
2 |
3 |
4 |
5 |
6 |
2 |
3 |
4 |
5 |
6 |
0 |
1 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
||||
4 |
5 |
6 |
0 |
1 |
2 |
3 |
5 |
6 |
0 |
1 |
2 |
3 |
4 |
3 |
4 |
5 |
6 |
0 |
1 |
2 |
||||
1 |
2 |
3 |
4 |
5 |
6 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
0 |
6 |
0 |
1 |
2 |
3 |
4 |
5 |
||||
5 |
6 |
0 |
1 |
2 |
3 |
4 |
4 |
5 |
6 |
0 |
1 |
2 |
3 |
2 |
3 |
4 |
5 |
6 |
0 |
1 |
||||
2 |
3 |
4 |
5 |
6 |
0 |
1 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
5 |
6 |
0 |
1 |
2 |
3 |
4 |
||||
6 |
0 |
1 |
2 |
3 |
4 |
5 |
3 |
4 |
5 |
6 |
0 |
1 |
2 |
1 |
2 |
3 |
4 |
5 |
6 |
0 |
1x number +1 [level 2] + 7x number [Level 2] + 49x number [Level 2] |
||||||||||||||||||||||||
5 |
6 |
0 |
1 |
2 |
3 |
4 |
1 |
2 |
3 |
4 |
5 |
6 |
0 |
2 |
3 |
4 |
5 |
6 |
0 |
1 |
||||
2 |
3 |
4 |
5 |
6 |
0 |
1 |
4 |
5 |
6 |
0 |
1 |
2 |
3 |
5 |
6 |
0 |
1 |
2 |
3 |
4 |
||||
6 |
0 |
1 |
2 |
3 |
4 |
5 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
1 |
2 |
3 |
4 |
5 |
6 |
0 |
||||
3 |
4 |
5 |
6 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
0 |
1 |
2 |
4 |
5 |
6 |
0 |
1 |
2 |
3 |
||||
0 |
1 |
2 |
3 |
4 |
5 |
6 |
6 |
0 |
1 |
2 |
3 |
4 |
5 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
||||
4 |
5 |
6 |
0 |
1 |
2 |
3 |
2 |
3 |
4 |
5 |
6 |
0 |
1 |
3 |
4 |
5 |
6 |
0 |
1 |
2 |
||||
1 |
2 |
3 |
4 |
5 |
6 |
0 |
5 |
6 |
0 |
1 |
2 |
3 |
4 |
6 |
0 |
1 |
2 |
3 |
4 |
5 |
1x number +1 [level 3] + 7x number [Level 3] + 49x number [Level 3] |
||||||||||||||||||||||||
0 |
1 |
2 |
3 |
4 |
5 |
6 |
3 |
4 |
5 |
6 |
0 |
1 |
2 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
||||
4 |
5 |
6 |
0 |
1 |
2 |
3 |
6 |
0 |
1 |
2 |
3 |
4 |
5 |
3 |
4 |
5 |
6 |
0 |
1 |
2 |
||||
1 |
2 |
3 |
4 |
5 |
6 |
0 |
2 |
3 |
4 |
5 |
6 |
0 |
1 |
6 |
0 |
1 |
2 |
3 |
4 |
5 |
||||
5 |
6 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
0 |
1 |
2 |
3 |
4 |
2 |
3 |
4 |
5 |
6 |
0 |
1 |
||||
2 |
3 |
4 |
5 |
6 |
0 |
1 |
1 |
2 |
3 |
4 |
5 |
6 |
0 |
5 |
6 |
0 |
1 |
2 |
3 |
4 |
||||
6 |
0 |
1 |
2 |
3 |
4 |
5 |
4 |
5 |
6 |
0 |
1 |
2 |
3 |
1 |
2 |
3 |
4 |
5 |
6 |
0 |
||||
3 |
4 |
5 |
6 |
0 |
1 |
2 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
4 |
5 |
6 |
0 |
1 |
2 |
3 |
1x number +1 [level 4] + 7x number [Level 4] + 49x number [Level 4] |
||||||||||||||||||||||||
2 |
3 |
4 |
5 |
6 |
0 |
1 |
5 |
6 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
0 |
1 |
2 |
3 |
4 |
||||
6 |
0 |
1 |
2 |
3 |
4 |
5 |
1 |
2 |
3 |
4 |
5 |
6 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
0 |
||||
3 |
4 |
5 |
6 |
0 |
1 |
2 |
4 |
5 |
6 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
0 |
1 |
2 |
3 |
||||
0 |
1 |
2 |
3 |
4 |
5 |
6 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
||||
4 |
5 |
6 |
0 |
1 |
2 |
3 |
3 |
4 |
5 |
6 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
0 |
1 |
2 |
||||
1 |
2 |
3 |
4 |
5 |
6 |
0 |
6 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
0 |
1 |
2 |
3 |
4 |
5 |
||||
5 |
6 |
0 |
1 |
2 |
3 |
4 |
2 |
3 |
4 |
5 |
6 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
0 |
1 |
1x number +1 [level 5] + 7x number [Level 5] + 49x number [Level 5] |
||||||||||||||||||||||||
4 |
5 |
6 |
0 |
1 |
2 |
3 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
3 |
4 |
5 |
6 |
0 |
1 |
2 |
||||
1 |
2 |
3 |
4 |
5 |
6 |
0 |
3 |
4 |
5 |
6 |
0 |
1 |
2 |
6 |
0 |
1 |
2 |
3 |
4 |
5 |
||||
5 |
6 |
0 |
1 |
2 |
3 |
4 |
6 |
0 |
1 |
2 |
3 |
4 |
5 |
2 |
3 |
4 |
5 |
6 |
0 |
1 |
||||
2 |
3 |
4 |
5 |
6 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
0 |
1 |
5 |
6 |
0 |
1 |
2 |
3 |
4 |
||||
6 |
0 |
1 |
2 |
3 |
4 |
5 |
5 |
6 |
0 |
1 |
2 |
3 |
4 |
1 |
2 |
3 |
4 |
5 |
6 |
0 |
||||
3 |
4 |
5 |
6 |
0 |
1 |
2 |
1 |
2 |
3 |
4 |
5 |
6 |
0 |
4 |
5 |
6 |
0 |
1 |
2 |
3 |
||||
0 |
1 |
2 |
3 |
4 |
5 |
6 |
4 |
5 |
6 |
0 |
1 |
2 |
3 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
1x number +1 [level 6] + 7x number [Level 6] + 49x number [Level 6] |
||||||||||||||||||||||||
6 |
0 |
1 |
2 |
3 |
4 |
5 |
2 |
3 |
4 |
5 |
6 |
0 |
1 |
1 |
2 |
3 |
4 |
5 |
6 |
0 |
||||
3 |
4 |
5 |
6 |
0 |
1 |
2 |
5 |
6 |
0 |
1 |
2 |
3 |
4 |
4 |
5 |
6 |
0 |
1 |
2 |
3 |
||||
0 |
1 |
2 |
3 |
4 |
5 |
6 |
1 |
2 |
3 |
4 |
5 |
6 |
0 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
||||
4 |
5 |
6 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
0 |
1 |
2 |
3 |
3 |
4 |
5 |
6 |
0 |
1 |
2 |
||||
1 |
2 |
3 |
4 |
5 |
6 |
0 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
6 |
0 |
1 |
2 |
3 |
4 |
5 |
||||
5 |
6 |
0 |
1 |
2 |
3 |
4 |
3 |
4 |
5 |
6 |
0 |
1 |
2 |
2 |
3 |
4 |
5 |
6 |
0 |
1 |
||||
2 |
3 |
4 |
5 |
6 |
0 |
1 |
6 |
0 |
1 |
2 |
3 |
4 |
5 |
5 |
6 |
0 |
1 |
2 |
3 |
4 |
1x number +1 [level 7] + 7x number [Level 7] + 49x number [Level 7] |
||||||||||||||||||||||||
1 |
2 |
3 |
4 |
5 |
6 |
0 |
4 |
5 |
6 |
0 |
1 |
2 |
3 |
6 |
0 |
1 |
2 |
3 |
4 |
5 |
||||
5 |
6 |
0 |
1 |
2 |
3 |
4 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
2 |
3 |
4 |
5 |
6 |
0 |
1 |
||||
2 |
3 |
4 |
5 |
6 |
0 |
1 |
3 |
4 |
5 |
6 |
0 |
1 |
2 |
5 |
6 |
0 |
1 |
2 |
3 |
4 |
||||
6 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
0 |
1 |
2 |
3 |
4 |
5 |
1 |
2 |
3 |
4 |
5 |
6 |
0 |
||||
3 |
4 |
5 |
6 |
0 |
1 |
2 |
2 |
3 |
4 |
5 |
6 |
0 |
1 |
4 |
5 |
6 |
0 |
1 |
2 |
3 |
||||
0 |
1 |
2 |
3 |
4 |
5 |
6 |
5 |
6 |
0 |
1 |
2 |
3 |
4 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
||||
4 |
5 |
6 |
0 |
1 |
2 |
3 |
1 |
2 |
3 |
4 |
5 |
6 |
0 |
3 |
4 |
5 |
6 |
0 |
1 |
2 |
=
Sym. & panm. 7x7x7 [Level 1] |
||||||
242 |
250 |
307 |
21 |
71 |
128 |
185 |
15 |
72 |
129 |
186 |
243 |
251 |
308 |
187 |
244 |
252 |
302 |
16 |
73 |
130 |
303 |
17 |
74 |
131 |
188 |
245 |
246 |
132 |
189 |
239 |
247 |
304 |
18 |
75 |
248 |
305 |
19 |
76 |
133 |
183 |
240 |
77 |
127 |
184 |
241 |
249 |
306 |
20 |
Sym. & panm. 7x7x7 [Level 2] |
||||||
111 |
168 |
218 |
275 |
332 |
46 |
54 |
276 |
333 |
47 |
55 |
112 |
162 |
219 |
56 |
106 |
163 |
220 |
277 |
334 |
48 |
221 |
278 |
335 |
49 |
50 |
107 |
164 |
43 |
51 |
108 |
165 |
222 |
279 |
336 |
166 |
223 |
280 |
330 |
44 |
52 |
109 |
331 |
45 |
53 |
110 |
167 |
224 |
274 |
Sym. & panm. 7x7x7 [Level 3] |
||||||
22 |
79 |
136 |
193 |
201 |
258 |
315 |
194 |
202 |
259 |
309 |
23 |
80 |
137 |
310 |
24 |
81 |
138 |
195 |
203 |
253 |
139 |
196 |
197 |
254 |
311 |
25 |
82 |
255 |
312 |
26 |
83 |
140 |
190 |
198 |
84 |
134 |
191 |
199 |
256 |
313 |
27 |
200 |
257 |
314 |
28 |
78 |
135 |
192 |
Sym. & panm. 7x7x7 [Level 4] |
||||||
283 |
340 |
5 |
62 |
119 |
169 |
226 |
63 |
113 |
170 |
227 |
284 |
341 |
6 |
228 |
285 |
342 |
7 |
57 |
114 |
171 |
1 |
58 |
115 |
172 |
229 |
286 |
343 |
173 |
230 |
287 |
337 |
2 |
59 |
116 |
338 |
3 |
60 |
117 |
174 |
231 |
281 |
118 |
175 |
225 |
282 |
339 |
4 |
61 |
Sym. & panm. 7x7x7 [Level 5] |
||||||
152 |
209 |
266 |
316 |
30 |
87 |
144 |
317 |
31 |
88 |
145 |
153 |
210 |
260 |
146 |
154 |
204 |
261 |
318 |
32 |
89 |
262 |
319 |
33 |
90 |
147 |
148 |
205 |
91 |
141 |
149 |
206 |
263 |
320 |
34 |
207 |
264 |
321 |
35 |
85 |
142 |
150 |
29 |
86 |
143 |
151 |
208 |
265 |
322 |
Sym. & panm. 7x7x7 [Level 6] |
||||||
70 |
120 |
177 |
234 |
291 |
299 |
13 |
235 |
292 |
300 |
14 |
64 |
121 |
178 |
8 |
65 |
122 |
179 |
236 |
293 |
301 |
180 |
237 |
294 |
295 |
9 |
66 |
123 |
296 |
10 |
67 |
124 |
181 |
238 |
288 |
125 |
182 |
232 |
289 |
297 |
11 |
68 |
290 |
298 |
12 |
69 |
126 |
176 |
233 |
Sym. & panm. 7x7x7 [Level 7] |
||||||
324 |
38 |
95 |
103 |
160 |
217 |
267 |
104 |
161 |
211 |
268 |
325 |
39 |
96 |
269 |
326 |
40 |
97 |
105 |
155 |
212 |
98 |
99 |
156 |
213 |
270 |
327 |
41 |
214 |
271 |
328 |
42 |
92 |
100 |
157 |
36 |
93 |
101 |
158 |
215 |
272 |
329 |
159 |
216 |
273 |
323 |
37 |
94 |
102 |
Extra magic features:
History
See on website
http://www.multimagie.com/English/Perfectcubes.htm#FirstPerfect that Rev. A.H. Frost constructed the first symmetric panmagic 7x7x7 cube in
1866!!! Probably he used the same construction method (but with alternate shifts).
Use the shift method to construct magic cubes of odd order and from 9x9x9 and up the result is Nasik. See on this website the shift method for:
5x5x5, 7x7x7, 9x9x9, 11x11x11, 13x13x13, 15x15x15, 17x17x17, 19x19x19, 21x21x21,
23x23x23, 25x25x25, 27x27x27, 29x29x29, 31x31x31