Use as first grid (in the levels 1 up to 4) 4x Franklin panmagic 8x8 square and (in the levels 5 up to 8) 4x its inverse. The second grid consists of the numbers 0 up to 7 (see for example level 1 and find in each row/column/diagonal 2x or 4x 0 and 2x or 4x 7 in a row).
Take 1x number from first grid with Franklin panmagic 8x8x8 and its inverse [level1]
1 | ||||||||
1 | 55 | 14 | 60 | 2 | 56 | 13 | 59 | |
16 | 58 | 3 | 53 | 15 | 57 | 4 | 54 | |
51 | 5 | 64 | 10 | 52 | 6 | 63 | 9 | |
62 | 12 | 49 | 7 | 61 | 11 | 50 | 8 | |
17 | 39 | 30 | 44 | 18 | 40 | 29 | 43 | |
32 | 42 | 19 | 37 | 31 | 41 | 20 | 38 | |
35 | 21 | 48 | 26 | 36 | 22 | 47 | 25 | |
46 | 28 | 33 | 23 | 45 | 27 | 34 | 24 | |
2 | ||||||||
1 | 55 | 14 | 60 | 2 | 56 | 13 | 59 | |
16 | 58 | 3 | 53 | 15 | 57 | 4 | 54 | |
51 | 5 | 64 | 10 | 52 | 6 | 63 | 9 | |
62 | 12 | 49 | 7 | 61 | 11 | 50 | 8 | |
17 | 39 | 30 | 44 | 18 | 40 | 29 | 43 | |
32 | 42 | 19 | 37 | 31 | 41 | 20 | 38 | |
35 | 21 | 48 | 26 | 36 | 22 | 47 | 25 | |
46 | 28 | 33 | 23 | 45 | 27 | 34 | 24 | |
3 | ||||||||
1 | 55 | 14 | 60 | 2 | 56 | 13 | 59 | |
16 | 58 | 3 | 53 | 15 | 57 | 4 | 54 | |
51 | 5 | 64 | 10 | 52 | 6 | 63 | 9 | |
62 | 12 | 49 | 7 | 61 | 11 | 50 | 8 | |
17 | 39 | 30 | 44 | 18 | 40 | 29 | 43 | |
32 | 42 | 19 | 37 | 31 | 41 | 20 | 38 | |
35 | 21 | 48 | 26 | 36 | 22 | 47 | 25 | |
46 | 28 | 33 | 23 | 45 | 27 | 34 | 24 | |
4 | ||||||||
1 | 55 | 14 | 60 | 2 | 56 | 13 | 59 | |
16 | 58 | 3 | 53 | 15 | 57 | 4 | 54 | |
51 | 5 | 64 | 10 | 52 | 6 | 63 | 9 | |
62 | 12 | 49 | 7 | 61 | 11 | 50 | 8 | |
17 | 39 | 30 | 44 | 18 | 40 | 29 | 43 | |
32 | 42 | 19 | 37 | 31 | 41 | 20 | 38 | |
35 | 21 | 48 | 26 | 36 | 22 | 47 | 25 | |
46 | 28 | 33 | 23 | 45 | 27 | 34 | 24 | |
5 | ||||||||
64 | 10 | 51 | 5 | 63 | 9 | 52 | 6 | |
49 | 7 | 62 | 12 | 50 | 8 | 61 | 11 | |
14 | 60 | 1 | 55 | 13 | 59 | 2 | 56 | |
3 | 53 | 16 | 58 | 4 | 54 | 15 | 57 | |
48 | 26 | 35 | 21 | 47 | 25 | 36 | 22 | |
33 | 23 | 46 | 28 | 34 | 24 | 45 | 27 | |
30 | 44 | 17 | 39 | 29 | 43 | 18 | 40 | |
19 | 37 | 32 | 42 | 20 | 38 | 31 | 41 | |
6 | ||||||||
64 | 10 | 51 | 5 | 63 | 9 | 52 | 6 | |
49 | 7 | 62 | 12 | 50 | 8 | 61 | 11 | |
14 | 60 | 1 | 55 | 13 | 59 | 2 | 56 | |
3 | 53 | 16 | 58 | 4 | 54 | 15 | 57 | |
48 | 26 | 35 | 21 | 47 | 25 | 36 | 22 | |
33 | 23 | 46 | 28 | 34 | 24 | 45 | 27 | |
30 | 44 | 17 | 39 | 29 | 43 | 18 | 40 | |
19 | 37 | 32 | 42 | 20 | 38 | 31 | 41 | |
7 | ||||||||
64 | 10 | 51 | 5 | 63 | 9 | 52 | 6 | |
49 | 7 | 62 | 12 | 50 | 8 | 61 | 11 | |
14 | 60 | 1 | 55 | 13 | 59 | 2 | 56 | |
3 | 53 | 16 | 58 | 4 | 54 | 15 | 57 | |
48 | 26 | 35 | 21 | 47 | 25 | 36 | 22 | |
33 | 23 | 46 | 28 | 34 | 24 | 45 | 27 | |
30 | 44 | 17 | 39 | 29 | 43 | 18 | 40 | |
19 | 37 | 32 | 42 | 20 | 38 | 31 | 41 | |
8 | ||||||||
64 | 10 | 51 | 5 | 63 | 9 | 52 | 6 | |
49 | 7 | 62 | 12 | 50 | 8 | 61 | 11 | |
14 | 60 | 1 | 55 | 13 | 59 | 2 | 56 | |
3 | 53 | 16 | 58 | 4 | 54 | 15 | 57 | |
48 | 26 | 35 | 21 | 47 | 25 | 36 | 22 | |
33 | 23 | 46 | 28 | 34 | 24 | 45 | 27 | |
30 | 44 | 17 | 39 | 29 | 43 | 18 | 40 | |
19 | 37 | 32 | 42 | 20 | 38 | 31 | 41 |
+ 64x number from second grid with numbers 0 up to 7 [level 1]
1 | ||||||||
0 | 0 | 7 | 7 | 0 | 0 | 7 | 7 | |
0 | 0 | 7 | 7 | 0 | 0 | 7 | 7 | |
7 | 7 | 0 | 0 | 7 | 7 | 0 | 0 | |
7 | 7 | 0 | 0 | 7 | 7 | 0 | 0 | |
7 | 7 | 0 | 0 | 7 | 7 | 0 | 0 | |
7 | 7 | 0 | 0 | 7 | 7 | 0 | 0 | |
0 | 0 | 7 | 7 | 0 | 0 | 7 | 7 | |
0 | 0 | 7 | 7 | 0 | 0 | 7 | 7 | |
2 | ||||||||
7 | 7 | 0 | 0 | 7 | 7 | 0 | 0 | |
7 | 7 | 0 | 0 | 7 | 7 | 0 | 0 | |
0 | 0 | 7 | 7 | 0 | 0 | 7 | 7 | |
0 | 0 | 7 | 7 | 0 | 0 | 7 | 7 | |
0 | 0 | 7 | 7 | 0 | 0 | 7 | 7 | |
0 | 0 | 7 | 7 | 0 | 0 | 7 | 7 | |
7 | 7 | 0 | 0 | 7 | 7 | 0 | 0 | |
7 | 7 | 0 | 0 | 7 | 7 | 0 | 0 | |
3 | ||||||||
1 | 1 | 6 | 6 | 1 | 1 | 6 | 6 | |
1 | 1 | 6 | 6 | 1 | 1 | 6 | 6 | |
6 | 6 | 1 | 1 | 6 | 6 | 1 | 1 | |
6 | 6 | 1 | 1 | 6 | 6 | 1 | 1 | |
6 | 6 | 1 | 1 | 6 | 6 | 1 | 1 | |
6 | 6 | 1 | 1 | 6 | 6 | 1 | 1 | |
1 | 1 | 6 | 6 | 1 | 1 | 6 | 6 | |
1 | 1 | 6 | 6 | 1 | 1 | 6 | 6 | |
4 | ||||||||
6 | 6 | 1 | 1 | 6 | 6 | 1 | 1 | |
6 | 6 | 1 | 1 | 6 | 6 | 1 | 1 | |
1 | 1 | 6 | 6 | 1 | 1 | 6 | 6 | |
1 | 1 | 6 | 6 | 1 | 1 | 6 | 6 | |
1 | 1 | 6 | 6 | 1 | 1 | 6 | 6 | |
1 | 1 | 6 | 6 | 1 | 1 | 6 | 6 | |
6 | 6 | 1 | 1 | 6 | 6 | 1 | 1 | |
6 | 6 | 1 | 1 | 6 | 6 | 1 | 1 | |
5 | ||||||||
2 | 2 | 5 | 5 | 2 | 2 | 5 | 5 | |
2 | 2 | 5 | 5 | 2 | 2 | 5 | 5 | |
5 | 5 | 2 | 2 | 5 | 5 | 2 | 2 | |
5 | 5 | 2 | 2 | 5 | 5 | 2 | 2 | |
5 | 5 | 2 | 2 | 5 | 5 | 2 | 2 | |
5 | 5 | 2 | 2 | 5 | 5 | 2 | 2 | |
2 | 2 | 5 | 5 | 2 | 2 | 5 | 5 | |
2 | 2 | 5 | 5 | 2 | 2 | 5 | 5 | |
6 | ||||||||
5 | 5 | 2 | 2 | 5 | 5 | 2 | 2 | |
5 | 5 | 2 | 2 | 5 | 5 | 2 | 2 | |
2 | 2 | 5 | 5 | 2 | 2 | 5 | 5 | |
2 | 2 | 5 | 5 | 2 | 2 | 5 | 5 | |
2 | 2 | 5 | 5 | 2 | 2 | 5 | 5 | |
2 | 2 | 5 | 5 | 2 | 2 | 5 | 5 | |
5 | 5 | 2 | 2 | 5 | 5 | 2 | 2 | |
5 | 5 | 2 | 2 | 5 | 5 | 2 | 2 | |
7 | ||||||||
3 | 3 | 4 | 4 | 3 | 3 | 4 | 4 | |
3 | 3 | 4 | 4 | 3 | 3 | 4 | 4 | |
4 | 4 | 3 | 3 | 4 | 4 | 3 | 3 | |
4 | 4 | 3 | 3 | 4 | 4 | 3 | 3 | |
4 | 4 | 3 | 3 | 4 | 4 | 3 | 3 | |
4 | 4 | 3 | 3 | 4 | 4 | 3 | 3 | |
3 | 3 | 4 | 4 | 3 | 3 | 4 | 4 | |
3 | 3 | 4 | 4 | 3 | 3 | 4 | 4 | |
8 | ||||||||
4 | 4 | 3 | 3 | 4 | 4 | 3 | 3 | |
4 | 4 | 3 | 3 | 4 | 4 | 3 | 3 | |
3 | 3 | 4 | 4 | 3 | 3 | 4 | 4 | |
3 | 3 | 4 | 4 | 3 | 3 | 4 | 4 | |
3 | 3 | 4 | 4 | 3 | 3 | 4 | 4 | |
3 | 3 | 4 | 4 | 3 | 3 | 4 | 4 | |
4 | 4 | 3 | 3 | 4 | 4 | 3 | 3 | |
4 | 4 | 3 | 3 | 4 | 4 | 3 | 3 |
= 8x8x8 diagonal magic cube [level 1]
1 | ||||||||
1 | 55 | 462 | 508 | 2 | 56 | 461 | 507 | |
16 | 58 | 451 | 501 | 15 | 57 | 452 | 502 | |
499 | 453 | 64 | 10 | 500 | 454 | 63 | 9 | |
510 | 460 | 49 | 7 | 509 | 459 | 50 | 8 | |
465 | 487 | 30 | 44 | 466 | 488 | 29 | 43 | |
480 | 490 | 19 | 37 | 479 | 489 | 20 | 38 | |
35 | 21 | 496 | 474 | 36 | 22 | 495 | 473 | |
46 | 28 | 481 | 471 | 45 | 27 | 482 | 472 | |
2 | ||||||||
449 | 503 | 14 | 60 | 450 | 504 | 13 | 59 | |
464 | 506 | 3 | 53 | 463 | 505 | 4 | 54 | |
51 | 5 | 512 | 458 | 52 | 6 | 511 | 457 | |
62 | 12 | 497 | 455 | 61 | 11 | 498 | 456 | |
17 | 39 | 478 | 492 | 18 | 40 | 477 | 491 | |
32 | 42 | 467 | 485 | 31 | 41 | 468 | 486 | |
483 | 469 | 48 | 26 | 484 | 470 | 47 | 25 | |
494 | 476 | 33 | 23 | 493 | 475 | 34 | 24 | |
3 | ||||||||
65 | 119 | 398 | 444 | 66 | 120 | 397 | 443 | |
80 | 122 | 387 | 437 | 79 | 121 | 388 | 438 | |
435 | 389 | 128 | 74 | 436 | 390 | 127 | 73 | |
446 | 396 | 113 | 71 | 445 | 395 | 114 | 72 | |
401 | 423 | 94 | 108 | 402 | 424 | 93 | 107 | |
416 | 426 | 83 | 101 | 415 | 425 | 84 | 102 | |
99 | 85 | 432 | 410 | 100 | 86 | 431 | 409 | |
110 | 92 | 417 | 407 | 109 | 91 | 418 | 408 | |
4 | ||||||||
385 | 439 | 78 | 124 | 386 | 440 | 77 | 123 | |
400 | 442 | 67 | 117 | 399 | 441 | 68 | 118 | |
115 | 69 | 448 | 394 | 116 | 70 | 447 | 393 | |
126 | 76 | 433 | 391 | 125 | 75 | 434 | 392 | |
81 | 103 | 414 | 428 | 82 | 104 | 413 | 427 | |
96 | 106 | 403 | 421 | 95 | 105 | 404 | 422 | |
419 | 405 | 112 | 90 | 420 | 406 | 111 | 89 | |
430 | 412 | 97 | 87 | 429 | 411 | 98 | 88 | |
5 | ||||||||
192 | 138 | 371 | 325 | 191 | 137 | 372 | 326 | |
177 | 135 | 382 | 332 | 178 | 136 | 381 | 331 | |
334 | 380 | 129 | 183 | 333 | 379 | 130 | 184 | |
323 | 373 | 144 | 186 | 324 | 374 | 143 | 185 | |
368 | 346 | 163 | 149 | 367 | 345 | 164 | 150 | |
353 | 343 | 174 | 156 | 354 | 344 | 173 | 155 | |
158 | 172 | 337 | 359 | 157 | 171 | 338 | 360 | |
147 | 165 | 352 | 362 | 148 | 166 | 351 | 361 | |
6 | ||||||||
384 | 330 | 179 | 133 | 383 | 329 | 180 | 134 | |
369 | 327 | 190 | 140 | 370 | 328 | 189 | 139 | |
142 | 188 | 321 | 375 | 141 | 187 | 322 | 376 | |
131 | 181 | 336 | 378 | 132 | 182 | 335 | 377 | |
176 | 154 | 355 | 341 | 175 | 153 | 356 | 342 | |
161 | 151 | 366 | 348 | 162 | 152 | 365 | 347 | |
350 | 364 | 145 | 167 | 349 | 363 | 146 | 168 | |
339 | 357 | 160 | 170 | 340 | 358 | 159 | 169 | |
7 | ||||||||
256 | 202 | 307 | 261 | 255 | 201 | 308 | 262 | |
241 | 199 | 318 | 268 | 242 | 200 | 317 | 267 | |
270 | 316 | 193 | 247 | 269 | 315 | 194 | 248 | |
259 | 309 | 208 | 250 | 260 | 310 | 207 | 249 | |
304 | 282 | 227 | 213 | 303 | 281 | 228 | 214 | |
289 | 279 | 238 | 220 | 290 | 280 | 237 | 219 | |
222 | 236 | 273 | 295 | 221 | 235 | 274 | 296 | |
211 | 229 | 288 | 298 | 212 | 230 | 287 | 297 | |
8 | ||||||||
320 | 266 | 243 | 197 | 319 | 265 | 244 | 198 | |
305 | 263 | 254 | 204 | 306 | 264 | 253 | 203 | |
206 | 252 | 257 | 311 | 205 | 251 | 258 | 312 | |
195 | 245 | 272 | 314 | 196 | 246 | 271 | 313 | |
240 | 218 | 291 | 277 | 239 | 217 | 292 | 278 | |
225 | 215 | 302 | 284 | 226 | 216 | 301 | 283 | |
286 | 300 | 209 | 231 | 285 | 299 | 210 | 232 | |
275 | 293 | 224 | 234 | 276 | 294 | 223 | 233 |
N.B.: The magic cube is also panmagic in the levels and each 1/2 row/column in the levels give 1/2 magic sum.
See for check if all numbers are in the magic cube and addition of the numbers give the right magic sum, the download below.
With method composite 1 you use a magic square to construct a magic cube. See on this website the construction of:
3x3x3 (simple), 4x4x4 (most perfect), 5x5x5 (pantriagonal), 7x7x7 (pantriagonal),
9x9x9 (pandiagonal & compact), 12x12x12 (diagonal), 12x12x12 (pantriagonal),
15x15x15 (pandiagonal & compact), 16x16x16 (Nasik)a, 16x16x16 (Nasik)b,
20x20x20 (diagonal), 20x20x20 (pantriagonal), 24x24x24 (diagonal), 24x24x24
(pantriagonal), 28x28x28 (diagonal), 28x28x28 (pantriagonal)