See for explanation about the Medjig method to construct a magic square: 6x6 magic square.
You can construct an 8x8x8 pantriagonal magic cube by using two grids. The first grid consists of a 2x2x2 'blown up' pantriagonal 4x4x4 magic cube. The second grid does not consists of 2x2 Medjig tiles with the numbers 0 up to 3, but consists of 2x2x2 Medjig blocks with the numbers 0 up to 7. I have to admit, that it was not a big puzzle to get a valid Medjig grid.
Take 1x number from first grid with 2x2x2 'blown up' pantriagonal 4x4x4 cube
1 | 260 | 260 | 260 | 260 | 260 | 260 | 260 | 260 | 1 | |
260 | 6 | 6 | 27 | 27 | 54 | 54 | 43 | 43 | 28 | |
260 | 6 | 6 | 27 | 27 | 54 | 54 | 43 | 43 | 28 | |
260 | 51 | 51 | 46 | 46 | 3 | 3 | 30 | 30 | 28 | |
260 | 51 | 51 | 46 | 46 | 3 | 3 | 30 | 30 | 28 | |
260 | 16 | 16 | 17 | 17 | 64 | 64 | 33 | 33 | 28 | |
260 | 16 | 16 | 17 | 17 | 64 | 64 | 33 | 33 | 28 | |
260 | 57 | 57 | 40 | 40 | 9 | 9 | 24 | 24 | 28 | |
260 | 57 | 57 | 40 | 40 | 9 | 9 | 24 | 24 | 28 | |
2 | 260 | 260 | 260 | 260 | 260 | 260 | 260 | 260 | 2 | |
260 | 6 | 6 | 27 | 27 | 54 | 54 | 43 | 43 | 28 | |
260 | 6 | 6 | 27 | 27 | 54 | 54 | 43 | 43 | 28 | |
260 | 51 | 51 | 46 | 46 | 3 | 3 | 30 | 30 | 28 | |
260 | 51 | 51 | 46 | 46 | 3 | 3 | 30 | 30 | 28 | |
260 | 16 | 16 | 17 | 17 | 64 | 64 | 33 | 33 | 28 | |
260 | 16 | 16 | 17 | 17 | 64 | 64 | 33 | 33 | 28 | |
260 | 57 | 57 | 40 | 40 | 9 | 9 | 24 | 24 | 28 | |
260 | 57 | 57 | 40 | 40 | 9 | 9 | 24 | 24 | 28 | |
3 | 260 | 260 | 260 | 260 | 260 | 260 | 260 | 260 | 3 | |
260 | 63 | 63 | 34 | 34 | 15 | 15 | 18 | 18 | 28 | |
260 | 63 | 63 | 34 | 34 | 15 | 15 | 18 | 18 | 28 | |
260 | 10 | 10 | 23 | 23 | 58 | 58 | 39 | 39 | 28 | |
260 | 10 | 10 | 23 | 23 | 58 | 58 | 39 | 39 | 28 | |
260 | 53 | 53 | 44 | 44 | 5 | 5 | 28 | 28 | 28 | |
260 | 53 | 53 | 44 | 44 | 5 | 5 | 28 | 28 | 28 | |
260 | 4 | 4 | 29 | 29 | 52 | 52 | 45 | 45 | 28 | |
260 | 4 | 4 | 29 | 29 | 52 | 52 | 45 | 45 | 28 | |
4 | 260 | 260 | 260 | 260 | 260 | 260 | 260 | 260 | 4 | |
260 | 63 | 63 | 34 | 34 | 15 | 15 | 18 | 18 | 28 | |
260 | 63 | 63 | 34 | 34 | 15 | 15 | 18 | 18 | 28 | |
260 | 10 | 10 | 23 | 23 | 58 | 58 | 39 | 39 | 28 | |
260 | 10 | 10 | 23 | 23 | 58 | 58 | 39 | 39 | 28 | |
260 | 53 | 53 | 44 | 44 | 5 | 5 | 28 | 28 | 28 | |
260 | 53 | 53 | 44 | 44 | 5 | 5 | 28 | 28 | 28 | |
260 | 4 | 4 | 29 | 29 | 52 | 52 | 45 | 45 | 28 | |
260 | 4 | 4 | 29 | 29 | 52 | 52 | 45 | 45 | 28 | |
5 | 260 | 260 | 260 | 260 | 260 | 260 | 260 | 260 | 5 | |
260 | 1 | 1 | 32 | 32 | 49 | 49 | 48 | 48 | 28 | |
260 | 1 | 1 | 32 | 32 | 49 | 49 | 48 | 48 | 28 | |
260 | 56 | 56 | 41 | 41 | 8 | 8 | 25 | 25 | 28 | |
260 | 56 | 56 | 41 | 41 | 8 | 8 | 25 | 25 | 28 | |
260 | 11 | 11 | 22 | 22 | 59 | 59 | 38 | 38 | 28 | |
260 | 11 | 11 | 22 | 22 | 59 | 59 | 38 | 38 | 28 | |
260 | 62 | 62 | 35 | 35 | 14 | 14 | 19 | 19 | 28 | |
260 | 62 | 62 | 35 | 35 | 14 | 14 | 19 | 19 | 28 | |
6 | 260 | 260 | 260 | 260 | 260 | 260 | 260 | 260 | 6 | |
260 | 1 | 1 | 32 | 32 | 49 | 49 | 48 | 48 | 28 | |
260 | 1 | 1 | 32 | 32 | 49 | 49 | 48 | 48 | 28 | |
260 | 56 | 56 | 41 | 41 | 8 | 8 | 25 | 25 | 28 | |
260 | 56 | 56 | 41 | 41 | 8 | 8 | 25 | 25 | 28 | |
260 | 11 | 11 | 22 | 22 | 59 | 59 | 38 | 38 | 28 | |
260 | 11 | 11 | 22 | 22 | 59 | 59 | 38 | 38 | 28 | |
260 | 62 | 62 | 35 | 35 | 14 | 14 | 19 | 19 | 28 | |
260 | 62 | 62 | 35 | 35 | 14 | 14 | 19 | 19 | 28 | |
7 | 260 | 260 | 260 | 260 | 260 | 260 | 260 | 260 | 7 | |
260 | 60 | 60 | 37 | 37 | 12 | 12 | 21 | 21 | 28 | |
260 | 60 | 60 | 37 | 37 | 12 | 12 | 21 | 21 | 28 | |
260 | 13 | 13 | 20 | 20 | 61 | 61 | 36 | 36 | 28 | |
260 | 13 | 13 | 20 | 20 | 61 | 61 | 36 | 36 | 28 | |
260 | 50 | 50 | 47 | 47 | 2 | 2 | 31 | 31 | 28 | |
260 | 50 | 50 | 47 | 47 | 2 | 2 | 31 | 31 | 28 | |
260 | 7 | 7 | 26 | 26 | 55 | 55 | 42 | 42 | 28 | |
260 | 7 | 7 | 26 | 26 | 55 | 55 | 42 | 42 | 28 | |
8 | 260 | 260 | 260 | 260 | 260 | 260 | 260 | 260 | 8 | |
260 | 60 | 60 | 37 | 37 | 12 | 12 | 21 | 21 | 28 | |
260 | 60 | 60 | 37 | 37 | 12 | 12 | 21 | 21 | 28 | |
260 | 13 | 13 | 20 | 20 | 61 | 61 | 36 | 36 | 28 | |
260 | 13 | 13 | 20 | 20 | 61 | 61 | 36 | 36 | 28 | |
260 | 50 | 50 | 47 | 47 | 2 | 2 | 31 | 31 | 28 | |
260 | 50 | 50 | 47 | 47 | 2 | 2 | 31 | 31 | 28 | |
260 | 7 | 7 | 26 | 26 | 55 | 55 | 42 | 42 | 28 | |
260 | 7 | 7 | 26 | 26 | 55 | 55 | 42 | 42 | 28 |
+64x number from second grid with the 2x2x2 Medjig blocks
1 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | |
28 | 0 | 3 | 5 | 6 | 5 | 6 | 0 | 3 | |
28 | 5 | 6 | 0 | 3 | 0 | 3 | 5 | 6 | |
28 | 3 | 0 | 6 | 5 | 6 | 5 | 3 | 0 | |
28 | 6 | 5 | 3 | 0 | 3 | 0 | 6 | 5 | |
28 | 0 | 3 | 5 | 6 | 5 | 6 | 0 | 3 | |
28 | 5 | 6 | 0 | 3 | 0 | 3 | 5 | 6 | |
28 | 3 | 0 | 6 | 5 | 6 | 5 | 3 | 0 | |
28 | 6 | 5 | 3 | 0 | 3 | 0 | 6 | 5 | |
2 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | |
28 | 7 | 4 | 2 | 1 | 2 | 1 | 7 | 4 | |
28 | 2 | 1 | 7 | 4 | 7 | 4 | 2 | 1 | |
28 | 4 | 7 | 1 | 2 | 1 | 2 | 4 | 7 | |
28 | 1 | 2 | 4 | 7 | 4 | 7 | 1 | 2 | |
28 | 7 | 4 | 2 | 1 | 2 | 1 | 7 | 4 | |
28 | 2 | 1 | 7 | 4 | 7 | 4 | 2 | 1 | |
28 | 4 | 7 | 1 | 2 | 1 | 2 | 4 | 7 | |
28 | 1 | 2 | 4 | 7 | 4 | 7 | 1 | 2 | |
3 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | |
28 | 0 | 3 | 5 | 6 | 5 | 6 | 0 | 3 | |
28 | 5 | 6 | 0 | 3 | 0 | 3 | 5 | 6 | |
28 | 3 | 0 | 6 | 5 | 6 | 5 | 3 | 0 | |
28 | 6 | 5 | 3 | 0 | 3 | 0 | 6 | 5 | |
28 | 0 | 3 | 5 | 6 | 5 | 6 | 0 | 3 | |
28 | 5 | 6 | 0 | 3 | 0 | 3 | 5 | 6 | |
28 | 3 | 0 | 6 | 5 | 6 | 5 | 3 | 0 | |
28 | 6 | 5 | 3 | 0 | 3 | 0 | 6 | 5 | |
4 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | |
28 | 7 | 4 | 2 | 1 | 2 | 1 | 7 | 4 | |
28 | 2 | 1 | 7 | 4 | 7 | 4 | 2 | 1 | |
28 | 4 | 7 | 1 | 2 | 1 | 2 | 4 | 7 | |
28 | 1 | 2 | 4 | 7 | 4 | 7 | 1 | 2 | |
28 | 7 | 4 | 2 | 1 | 2 | 1 | 7 | 4 | |
28 | 2 | 1 | 7 | 4 | 7 | 4 | 2 | 1 | |
28 | 4 | 7 | 1 | 2 | 1 | 2 | 4 | 7 | |
28 | 1 | 2 | 4 | 7 | 4 | 7 | 1 | 2 | |
5 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | |
28 | 0 | 3 | 5 | 6 | 5 | 6 | 0 | 3 | |
28 | 5 | 6 | 0 | 3 | 0 | 3 | 5 | 6 | |
28 | 3 | 0 | 6 | 5 | 6 | 5 | 3 | 0 | |
28 | 6 | 5 | 3 | 0 | 3 | 0 | 6 | 5 | |
28 | 0 | 3 | 5 | 6 | 5 | 6 | 0 | 3 | |
28 | 5 | 6 | 0 | 3 | 0 | 3 | 5 | 6 | |
28 | 3 | 0 | 6 | 5 | 6 | 5 | 3 | 0 | |
28 | 6 | 5 | 3 | 0 | 3 | 0 | 6 | 5 | |
6 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | |
28 | 7 | 4 | 2 | 1 | 2 | 1 | 7 | 4 | |
28 | 2 | 1 | 7 | 4 | 7 | 4 | 2 | 1 | |
28 | 4 | 7 | 1 | 2 | 1 | 2 | 4 | 7 | |
28 | 1 | 2 | 4 | 7 | 4 | 7 | 1 | 2 | |
28 | 7 | 4 | 2 | 1 | 2 | 1 | 7 | 4 | |
28 | 2 | 1 | 7 | 4 | 7 | 4 | 2 | 1 | |
28 | 4 | 7 | 1 | 2 | 1 | 2 | 4 | 7 | |
28 | 1 | 2 | 4 | 7 | 4 | 7 | 1 | 2 | |
7 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | |
28 | 0 | 3 | 5 | 6 | 5 | 6 | 0 | 3 | |
28 | 5 | 6 | 0 | 3 | 0 | 3 | 5 | 6 | |
28 | 3 | 0 | 6 | 5 | 6 | 5 | 3 | 0 | |
28 | 6 | 5 | 3 | 0 | 3 | 0 | 6 | 5 | |
28 | 0 | 3 | 5 | 6 | 5 | 6 | 0 | 3 | |
28 | 5 | 6 | 0 | 3 | 0 | 3 | 5 | 6 | |
28 | 3 | 0 | 6 | 5 | 6 | 5 | 3 | 0 | |
28 | 6 | 5 | 3 | 0 | 3 | 0 | 6 | 5 | |
8 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | |
28 | 7 | 4 | 2 | 1 | 2 | 1 | 7 | 4 | |
28 | 2 | 1 | 7 | 4 | 7 | 4 | 2 | 1 | |
28 | 4 | 7 | 1 | 2 | 1 | 2 | 4 | 7 | |
28 | 1 | 2 | 4 | 7 | 4 | 7 | 1 | 2 | |
28 | 7 | 4 | 2 | 1 | 2 | 1 | 7 | 4 | |
28 | 2 | 1 | 7 | 4 | 7 | 4 | 2 | 1 | |
28 | 4 | 7 | 1 | 2 | 1 | 2 | 4 | 7 | |
28 | 1 | 2 | 4 | 7 | 4 | 7 | 1 | 2 |
= 8x8x8 pantriagonal magic cube
1 | 2052 | 2052 | 2052 | 2052 | 2052 | 2052 | 2052 | 2052 | |
2052 | 6 | 198 | 347 | 411 | 374 | 438 | 43 | 235 | |
2052 | 326 | 390 | 27 | 219 | 54 | 246 | 363 | 427 | |
2052 | 243 | 51 | 430 | 366 | 387 | 323 | 222 | 30 | |
2052 | 435 | 371 | 238 | 46 | 195 | 3 | 414 | 350 | |
2052 | 16 | 208 | 337 | 401 | 384 | 448 | 33 | 225 | |
2052 | 336 | 400 | 17 | 209 | 64 | 256 | 353 | 417 | |
2052 | 249 | 57 | 424 | 360 | 393 | 329 | 216 | 24 | |
2052 | 441 | 377 | 232 | 40 | 201 | 9 | 408 | 344 | |
2 | 2052 | 2052 | 2052 | 2052 | 2052 | 2052 | 2052 | 2052 | |
2052 | 454 | 262 | 155 | 91 | 182 | 118 | 491 | 299 | |
2052 | 134 | 70 | 475 | 283 | 502 | 310 | 171 | 107 | |
2052 | 307 | 499 | 110 | 174 | 67 | 131 | 286 | 478 | |
2052 | 115 | 179 | 302 | 494 | 259 | 451 | 94 | 158 | |
2052 | 464 | 272 | 145 | 81 | 192 | 128 | 481 | 289 | |
2052 | 144 | 80 | 465 | 273 | 512 | 320 | 161 | 97 | |
2052 | 313 | 505 | 104 | 168 | 73 | 137 | 280 | 472 | |
2052 | 121 | 185 | 296 | 488 | 265 | 457 | 88 | 152 | |
3 | 2052 | 2052 | 2052 | 2052 | 2052 | 2052 | 2052 | 2052 | |
2052 | 63 | 255 | 354 | 418 | 335 | 399 | 18 | 210 | |
2052 | 383 | 447 | 34 | 226 | 15 | 207 | 338 | 402 | |
2052 | 202 | 10 | 407 | 343 | 442 | 378 | 231 | 39 | |
2052 | 394 | 330 | 215 | 23 | 250 | 58 | 423 | 359 | |
2052 | 53 | 245 | 364 | 428 | 325 | 389 | 28 | 220 | |
2052 | 373 | 437 | 44 | 236 | 5 | 197 | 348 | 412 | |
2052 | 196 | 4 | 413 | 349 | 436 | 372 | 237 | 45 | |
2052 | 388 | 324 | 221 | 29 | 244 | 52 | 429 | 365 | |
4 | 2052 | 2052 | 2052 | 2052 | 2052 | 2052 | 2052 | 2052 | |
2052 | 511 | 319 | 162 | 98 | 143 | 79 | 466 | 274 | |
2052 | 191 | 127 | 482 | 290 | 463 | 271 | 146 | 82 | |
2052 | 266 | 458 | 87 | 151 | 122 | 186 | 295 | 487 | |
2052 | 74 | 138 | 279 | 471 | 314 | 506 | 103 | 167 | |
2052 | 501 | 309 | 172 | 108 | 133 | 69 | 476 | 284 | |
2052 | 181 | 117 | 492 | 300 | 453 | 261 | 156 | 92 | |
2052 | 260 | 452 | 93 | 157 | 116 | 180 | 301 | 493 | |
2052 | 68 | 132 | 285 | 477 | 308 | 500 | 109 | 173 | |
5 | 2052 | 2052 | 2052 | 2052 | 2052 | 2052 | 2052 | 2052 | |
2052 | 1 | 193 | 352 | 416 | 369 | 433 | 48 | 240 | |
2052 | 321 | 385 | 32 | 224 | 49 | 241 | 368 | 432 | |
2052 | 248 | 56 | 425 | 361 | 392 | 328 | 217 | 25 | |
2052 | 440 | 376 | 233 | 41 | 200 | 8 | 409 | 345 | |
2052 | 11 | 203 | 342 | 406 | 379 | 443 | 38 | 230 | |
2052 | 331 | 395 | 22 | 214 | 59 | 251 | 358 | 422 | |
2052 | 254 | 62 | 419 | 355 | 398 | 334 | 211 | 19 | |
2052 | 446 | 382 | 227 | 35 | 206 | 14 | 403 | 339 | |
6 | 2052 | 2052 | 2052 | 2052 | 2052 | 2052 | 2052 | 2052 | |
2052 | 449 | 257 | 160 | 96 | 177 | 113 | 496 | 304 | |
2052 | 129 | 65 | 480 | 288 | 497 | 305 | 176 | 112 | |
2052 | 312 | 504 | 105 | 169 | 72 | 136 | 281 | 473 | |
2052 | 120 | 184 | 297 | 489 | 264 | 456 | 89 | 153 | |
2052 | 459 | 267 | 150 | 86 | 187 | 123 | 486 | 294 | |
2052 | 139 | 75 | 470 | 278 | 507 | 315 | 166 | 102 | |
2052 | 318 | 510 | 99 | 163 | 78 | 142 | 275 | 467 | |
2052 | 126 | 190 | 291 | 483 | 270 | 462 | 83 | 147 | |
7 | 2052 | 2052 | 2052 | 2052 | 2052 | 2052 | 2052 | 2052 | |
2052 | 60 | 252 | 357 | 421 | 332 | 396 | 21 | 213 | |
2052 | 380 | 444 | 37 | 229 | 12 | 204 | 341 | 405 | |
2052 | 205 | 13 | 404 | 340 | 445 | 381 | 228 | 36 | |
2052 | 397 | 333 | 212 | 20 | 253 | 61 | 420 | 356 | |
2052 | 50 | 242 | 367 | 431 | 322 | 386 | 31 | 223 | |
2052 | 370 | 434 | 47 | 239 | 2 | 194 | 351 | 415 | |
2052 | 199 | 7 | 410 | 346 | 439 | 375 | 234 | 42 | |
2052 | 391 | 327 | 218 | 26 | 247 | 55 | 426 | 362 | |
8 | 2052 | 2052 | 2052 | 2052 | 2052 | 2052 | 2052 | 2052 | |
2052 | 508 | 316 | 165 | 101 | 140 | 76 | 469 | 277 | |
2052 | 188 | 124 | 485 | 293 | 460 | 268 | 149 | 85 | |
2052 | 269 | 461 | 84 | 148 | 125 | 189 | 292 | 484 | |
2052 | 77 | 141 | 276 | 468 | 317 | 509 | 100 | 164 | |
2052 | 498 | 306 | 175 | 111 | 130 | 66 | 479 | 287 | |
2052 | 178 | 114 | 495 | 303 | 450 | 258 | 159 | 95 | |
2052 | 263 | 455 | 90 | 154 | 119 | 183 | 298 | 490 | |
2052 | 71 | 135 | 282 | 474 | 311 | 503 | 106 | 170 |
For check if all numbers are in the magic cube and addition of the numbers give the right magic sum, see download below.
With method of Medjig you can construct a magic cube of even order. See on this website the construction of:
6x6x6 (simple), 8x8x8 (pantriagonal), 10x10x10 (simple), 10x10x10 (pantriagonal), 12x12x12 (pantriagonal), 14x14x14 (pantriagonal), 16x16x16 (Nasik), 20x20x20 (pantriagonal), 22x22x22 (pantriagonal), 24x24x24 (diagonal), 24x24x24 (pantriagonal), 26x26x26 (pantriagonal), 28x28x28 (pantriagonal) and 32x32x32 (Nasik)