Op de website van Harvey Heinz is op pagina www.magic-squares.net/most-perfect.htm te zien dat een 4x4 vierkant met opeenvolgende getallen kan worden getransformeerd in een panmagisch 4x4 vierkant. Deze transformatie is mogelijk voor grootte is veelvoud van 4 (= 4x4, 8x8, 12x12, 16x16, ... magisch vierkant).
De transformatie van een 12x12 vierkant met opeenvolgende getallen tot een meest perfect magisch 12x12 vierkant gaat in 5 stappen, waarbij telkens ‘geel’ en ‘rood’ met elkaar worden verwisseld:
# |
* |
@ |
@ |
* |
# |
||||||||||||||||||||
1 |
13 |
25 |
37 |
49 |
61 |
73 |
85 |
97 |
109 |
121 |
133 |
1 |
13 |
133 |
121 |
49 |
61 |
85 |
73 |
97 |
109 |
37 |
25 |
||
2 |
14 |
26 |
38 |
50 |
62 |
74 |
86 |
98 |
110 |
122 |
134 |
2 |
14 |
134 |
122 |
50 |
62 |
86 |
74 |
98 |
110 |
38 |
26 |
||
3 |
15 |
27 |
39 |
51 |
63 |
75 |
87 |
99 |
111 |
123 |
135 |
# |
3 |
15 |
135 |
123 |
51 |
63 |
87 |
75 |
99 |
111 |
39 |
27 |
|
4 |
16 |
28 |
40 |
52 |
64 |
76 |
88 |
100 |
112 |
124 |
136 |
* |
4 |
16 |
136 |
124 |
52 |
64 |
88 |
76 |
100 |
112 |
40 |
28 |
|
5 |
17 |
29 |
41 |
53 |
65 |
77 |
89 |
101 |
113 |
125 |
137 |
5 |
17 |
137 |
125 |
53 |
65 |
89 |
77 |
101 |
113 |
41 |
29 |
||
6 |
18 |
30 |
42 |
54 |
66 |
78 |
90 |
102 |
114 |
126 |
138 |
6 |
18 |
138 |
126 |
54 |
66 |
90 |
78 |
102 |
114 |
42 |
30 |
||
7 |
19 |
31 |
43 |
55 |
67 |
79 |
91 |
103 |
115 |
127 |
139 |
@ |
7 |
19 |
139 |
127 |
55 |
67 |
91 |
79 |
103 |
115 |
43 |
31 |
|
8 |
20 |
32 |
44 |
56 |
68 |
80 |
92 |
104 |
116 |
128 |
140 |
@ |
8 |
20 |
140 |
128 |
56 |
68 |
92 |
80 |
104 |
116 |
44 |
32 |
|
9 |
21 |
33 |
45 |
57 |
69 |
81 |
93 |
105 |
117 |
129 |
141 |
9 |
21 |
141 |
129 |
57 |
69 |
93 |
81 |
105 |
117 |
45 |
33 |
||
10 |
22 |
34 |
46 |
58 |
70 |
82 |
94 |
106 |
118 |
130 |
142 |
10 |
22 |
142 |
130 |
58 |
70 |
94 |
82 |
106 |
118 |
46 |
34 |
||
11 |
23 |
35 |
47 |
59 |
71 |
83 |
95 |
107 |
119 |
131 |
143 |
* |
11 |
23 |
143 |
131 |
59 |
71 |
95 |
83 |
107 |
119 |
47 |
35 |
|
12 |
24 |
36 |
48 |
60 |
72 |
84 |
96 |
108 |
120 |
132 |
144 |
# |
12 |
24 |
144 |
132 |
60 |
72 |
96 |
84 |
108 |
120 |
48 |
36 |
|
1 |
13 |
133 |
121 |
49 |
61 |
85 |
73 |
97 |
109 |
37 |
25 |
1 |
24 |
133 |
132 |
49 |
72 |
85 |
84 |
97 |
120 |
37 |
36 |
||
2 |
14 |
134 |
122 |
50 |
62 |
86 |
74 |
98 |
110 |
38 |
26 |
2 |
14 |
134 |
122 |
50 |
62 |
86 |
74 |
98 |
110 |
38 |
26 |
||
12 |
24 |
144 |
132 |
60 |
72 |
96 |
84 |
108 |
120 |
48 |
36 |
12 |
13 |
144 |
121 |
60 |
61 |
96 |
73 |
108 |
109 |
48 |
25 |
||
11 |
23 |
143 |
131 |
59 |
71 |
95 |
83 |
107 |
119 |
47 |
35 |
11 |
23 |
143 |
131 |
59 |
71 |
95 |
83 |
107 |
119 |
47 |
35 |
||
5 |
17 |
137 |
125 |
53 |
65 |
89 |
77 |
101 |
113 |
41 |
29 |
5 |
20 |
137 |
128 |
53 |
68 |
89 |
80 |
101 |
116 |
41 |
32 |
||
6 |
18 |
138 |
126 |
54 |
66 |
90 |
78 |
102 |
114 |
42 |
30 |
6 |
18 |
138 |
126 |
54 |
66 |
90 |
78 |
102 |
114 |
42 |
30 |
||
8 |
20 |
140 |
128 |
56 |
68 |
92 |
80 |
104 |
116 |
44 |
32 |
8 |
17 |
140 |
125 |
56 |
65 |
92 |
77 |
104 |
113 |
44 |
29 |
||
7 |
19 |
139 |
127 |
55 |
67 |
91 |
79 |
103 |
115 |
43 |
31 |
7 |
19 |
139 |
127 |
55 |
67 |
91 |
79 |
103 |
115 |
43 |
31 |
||
9 |
21 |
141 |
129 |
57 |
69 |
93 |
81 |
105 |
117 |
45 |
33 |
9 |
16 |
141 |
124 |
57 |
64 |
93 |
76 |
105 |
112 |
45 |
28 |
||
10 |
22 |
142 |
130 |
58 |
70 |
94 |
82 |
106 |
118 |
46 |
34 |
10 |
22 |
142 |
130 |
58 |
70 |
94 |
82 |
106 |
118 |
46 |
34 |
||
4 |
16 |
136 |
124 |
52 |
64 |
88 |
76 |
100 |
112 |
40 |
28 |
4 |
21 |
136 |
129 |
52 |
69 |
88 |
81 |
100 |
117 |
40 |
33 |
||
3 |
15 |
135 |
123 |
51 |
63 |
87 |
75 |
99 |
111 |
39 |
27 |
3 |
15 |
135 |
123 |
51 |
63 |
87 |
75 |
99 |
111 |
39 |
27 |
||
1 |
24 |
133 |
132 |
49 |
72 |
85 |
84 |
97 |
120 |
37 |
36 |
1 |
24 |
133 |
132 |
49 |
72 |
85 |
84 |
97 |
120 |
37 |
36 |
||
134 |
122 |
2 |
14 |
86 |
74 |
50 |
62 |
38 |
26 |
98 |
110 |
143 |
122 |
11 |
14 |
95 |
74 |
59 |
62 |
47 |
26 |
107 |
110 |
||
12 |
13 |
144 |
121 |
60 |
61 |
96 |
73 |
108 |
109 |
48 |
25 |
12 |
13 |
144 |
121 |
60 |
61 |
96 |
73 |
108 |
109 |
48 |
25 |
||
143 |
131 |
11 |
23 |
95 |
83 |
59 |
71 |
47 |
35 |
107 |
119 |
134 |
131 |
2 |
23 |
86 |
83 |
50 |
71 |
38 |
35 |
98 |
119 |
||
5 |
20 |
137 |
128 |
53 |
68 |
89 |
80 |
101 |
116 |
41 |
32 |
5 |
20 |
137 |
128 |
53 |
68 |
89 |
80 |
101 |
116 |
41 |
32 |
||
138 |
126 |
6 |
18 |
90 |
78 |
54 |
66 |
42 |
30 |
102 |
114 |
139 |
126 |
7 |
18 |
91 |
78 |
55 |
66 |
43 |
30 |
103 |
114 |
||
8 |
17 |
140 |
125 |
56 |
65 |
92 |
77 |
104 |
113 |
44 |
29 |
8 |
17 |
140 |
125 |
56 |
65 |
92 |
77 |
104 |
113 |
44 |
29 |
||
139 |
127 |
7 |
19 |
91 |
79 |
55 |
67 |
43 |
31 |
103 |
115 |
138 |
127 |
6 |
19 |
90 |
79 |
54 |
67 |
42 |
31 |
102 |
115 |
||
9 |
16 |
141 |
124 |
57 |
64 |
93 |
76 |
105 |
112 |
45 |
28 |
9 |
16 |
141 |
124 |
57 |
64 |
93 |
76 |
105 |
112 |
45 |
28 |
||
142 |
130 |
10 |
22 |
94 |
82 |
58 |
70 |
46 |
34 |
106 |
118 |
135 |
130 |
3 |
22 |
87 |
82 |
51 |
70 |
39 |
34 |
99 |
118 |
||
4 |
21 |
136 |
129 |
52 |
69 |
88 |
81 |
100 |
117 |
40 |
33 |
4 |
21 |
136 |
129 |
52 |
69 |
88 |
81 |
100 |
117 |
40 |
33 |
||
135 |
123 |
3 |
15 |
87 |
75 |
51 |
63 |
39 |
27 |
99 |
111 |
142 |
123 |
10 |
15 |
94 |
75 |
58 |
63 |
46 |
27 |
106 |
111 |
De transformatie tot meest perfecte magische vierkanten werkt voor grootte is veelvoud van 4 vanaf 4x4 tot oneindig. Zie uitgewerkt voor 4x4, 8x8, 12x12, 16x16, 20x20, 24x24, 28x28 en 32x32