Deze methode werkt voor alle oneven vierkanten, die geen veelvoud van 3 zijn (dus 5x5, 7x7, 11x11, 13x13, 17x17, ...). Bijvoorbeeld voor het 13x13 vierkant, gebruik dan in de eerste rij de getallen 0-a-b-c-d-e-f-g-h-i-j-k-l (waarbij je voor a t/m l twaalf verschillende getallen uit 1 t/m 12 kunt nemen; dat is 12x11x10x9x8x7x6x5x4x3x2 = 479.001.600 verschillende getallencombinaties!!!)
Schuif in het eerste patroon de eerste regel in rij 2 t/m 13 telkens twee plaatsen naar links en schuif in het tweede patroon de eerste regel in rij 2 t/m 13 telkens twee plaatsen naar rechts.
Neem 1x getal uit 1e patroon +1
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 0 | 1 |
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 0 | 1 | 2 | 3 |
6 | 7 | 8 | 9 | 10 | 11 | 12 | 0 | 1 | 2 | 3 | 4 | 5 |
8 | 9 | 10 | 11 | 12 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
10 | 11 | 12 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
12 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 0 |
3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 0 | 1 | 2 |
5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 0 | 1 | 2 | 3 | 4 |
7 | 8 | 9 | 10 | 11 | 12 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
9 | 10 | 11 | 12 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
11 | 12 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
+ 13x getal uit 2e patroon
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
11 | 12 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
9 | 10 | 11 | 12 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
7 | 8 | 9 | 10 | 11 | 12 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 0 | 1 | 2 | 3 | 4 |
3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 0 | 1 | 2 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 0 |
12 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
10 | 11 | 12 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
8 | 9 | 10 | 11 | 12 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
6 | 7 | 8 | 9 | 10 | 11 | 12 | 0 | 1 | 2 | 3 | 4 | 5 |
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 0 | 1 | 2 | 3 |
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 0 | 1 |
= panmagisch 13x13 vierkant
1 | 15 | 29 | 43 | 57 | 71 | 85 | 99 | 113 | 127 | 141 | 155 | 169 |
146 | 160 | 5 | 19 | 33 | 47 | 61 | 75 | 89 | 103 | 117 | 118 | 132 |
122 | 136 | 150 | 164 | 9 | 23 | 37 | 51 | 65 | 66 | 80 | 94 | 108 |
98 | 112 | 126 | 140 | 154 | 168 | 13 | 14 | 28 | 42 | 56 | 70 | 84 |
74 | 88 | 102 | 116 | 130 | 131 | 145 | 159 | 4 | 18 | 32 | 46 | 60 |
50 | 64 | 78 | 79 | 93 | 107 | 121 | 135 | 149 | 163 | 8 | 22 | 36 |
26 | 27 | 41 | 55 | 69 | 83 | 97 | 111 | 125 | 139 | 153 | 167 | 12 |
158 | 3 | 17 | 31 | 45 | 59 | 73 | 87 | 101 | 115 | 129 | 143 | 144 |
134 | 148 | 162 | 7 | 21 | 35 | 49 | 63 | 77 | 91 | 92 | 106 | 120 |
110 | 124 | 138 | 152 | 166 | 11 | 25 | 39 | 40 | 54 | 68 | 82 | 96 |
86 | 100 | 114 | 128 | 142 | 156 | 157 | 2 | 16 | 30 | 44 | 58 | 72 |
62 | 76 | 90 | 104 | 105 | 119 | 133 | 147 | 161 | 6 | 20 | 34 | 48 |
38 | 52 | 53 | 67 | 81 | 95 | 109 | 123 | 137 | 151 | 165 | 10 | 24 |
Je kunt dit resultaat nog op een 2x2 tapijt van het 13x13 magisch vierkant verschuiven en dan krijg je 168x zoveel oplossingen.
Je kunt in plaats van een shift van 2 naar rechts en 2 naar links ook een shift van 3, 4, 5 of 6 naar links/ rechts nemen (b.v. in het eerste patroon 4 naar rechts en in het 2e patroon 2 naar links óf 2 naar rechts), waarbij je alle 3,48982 x 10^21 panmagische 13x13 vierkanten kunt maken.
De shiftmethode werk voor oneven grootte vanaf 5x5 tot oneindig. Zie uitgewerkt voor 5x5, 7x7, 9x9 (1), 9x9 (2), 11x11, 13x13, 15x15 (1), 15x15 (2), 17x17, 19x19, 21x21 (1), 21x21 (2), 23x23, 25x25, 27x27 (1), 27x27 (2), 29x29 en 31x31
N.B.: Bij grootte is (oneven) veelvoud van 3 leidt de eenvoudige shiftmethode meestal tot een semimagisch resultaat (dus niet kloppend voor de diagonalen). Maar als bepaalde randvoorwaarden in acht worden genomen, kan ook voor grootte is (oneven) veelvoud van 3 de shiftmethode worden gebruikt.