Je kunt het 15x15 magisch vierkant opbouwen uit 25 evenredige (semi)magische 3x3 vierkanten. Evenredig betekent dat alle 25 (semi)magisch 3x3 vierkanten dezelfde magische som van (1/5 x 1695 = ) 339 hebben. We gebruiken de rij- en kolomcoördinaten van het 3x3 magische vierkant. Alleen gebruiken we nu als rijcoördinaten niet de getallen 0 t/m 2 maar 1 t/m (25x3 = ) 75 en we verdelen de rijcoördinaten evenredig over de 25 magische 3x3 vierkanten. We gebruiken onderstaande tabel, waarbij we de 5 regels aan de andere 5 regels koppelen om de (5x5x3 =) 75 rijcoördinaten te krijgen:
1 | 3 | 5 | 9 | |
2 | 5 | 2 | 9 | |
3 | 2 | 4 | 9 | |
4 | 4 | 1 | 9 | |
5 | 1 | 3 | 9 |
Maak nu de 25 (semi)magische 3x3 vierkanten.
Rijcoördinaat +75x kolomcoördinaat = (semi)magisch 3x3 vierkant
38 | 1 | 75 | 0 | 2 | 1 | 38 | 151 | 150 | ||
75 | 38 | 1 | 2 | 1 | 0 | 225 | 113 | 1 | ||
1 | 75 | 38 | 1 | 0 | 2 | 76 | 75 | 188 | ||
40 | 2 | 72 | 0 | 2 | 1 | 40 | 152 | 147 | ||
72 | 40 | 2 | 2 | 1 | 0 | 222 | 115 | 2 | ||
2 | 72 | 40 | 1 | 0 | 2 | 77 | 72 | 190 | ||
37 | 3 | 74 | 0 | 2 | 1 | 37 | 153 | 149 | ||
74 | 37 | 3 | 2 | 1 | 0 | 224 | 112 | 3 | ||
3 | 74 | 37 | 1 | 0 | 2 | 78 | 74 | 187 | ||
39 | 4 | 71 | 0 | 2 | 1 | 39 | 154 | 146 | ||
71 | 39 | 4 | 2 | 1 | 0 | 221 | 114 | 4 | ||
4 | 71 | 39 | 1 | 0 | 2 | 79 | 71 | 189 | ||
36 | 5 | 73 | 0 | 2 | 1 | 36 | 155 | 148 | ||
73 | 36 | 5 | 2 | 1 | 0 | 223 | 111 | 5 | ||
5 | 73 | 36 | 1 | 0 | 2 | 80 | 73 | 186 | ||
48 | 6 | 60 | 0 | 2 | 1 | 48 | 156 | 135 | ||
60 | 48 | 6 | 2 | 1 | 0 | 210 | 123 | 6 | ||
6 | 60 | 48 | 1 | 0 | 2 | 81 | 60 | 198 | ||
50 | 7 | 57 | 0 | 2 | 1 | 50 | 157 | 132 | ||
57 | 50 | 7 | 2 | 1 | 0 | 207 | 125 | 7 | ||
7 | 57 | 50 | 1 | 0 | 2 | 82 | 57 | 200 | ||
47 | 8 | 59 | 0 | 2 | 1 | 47 | 158 | 134 | ||
59 | 47 | 8 | 2 | 1 | 0 | 209 | 122 | 8 | ||
8 | 59 | 47 | 1 | 0 | 2 | 83 | 59 | 197 | ||
49 | 9 | 56 | 0 | 2 | 1 | 49 | 159 | 131 | ||
56 | 49 | 9 | 2 | 1 | 0 | 206 | 124 | 9 | ||
9 | 56 | 49 | 1 | 0 | 2 | 84 | 56 | 199 | ||
46 | 10 | 58 | 0 | 2 | 1 | 46 | 160 | 133 | ||
58 | 46 | 10 | 2 | 1 | 0 | 208 | 121 | 10 | ||
10 | 58 | 46 | 1 | 0 | 2 | 85 | 58 | 196 | ||
33 | 11 | 70 | 0 | 2 | 1 | 33 | 161 | 145 | ||
70 | 33 | 11 | 2 | 1 | 0 | 220 | 108 | 11 | ||
11 | 70 | 33 | 1 | 0 | 2 | 86 | 70 | 183 | ||
35 | 12 | 67 | 0 | 2 | 1 | 35 | 162 | 142 | ||
67 | 35 | 12 | 2 | 1 | 0 | 217 | 110 | 12 | ||
12 | 67 | 35 | 1 | 0 | 2 | 87 | 67 | 185 | ||
32 | 13 | 69 | 0 | 2 | 1 | 32 | 163 | 144 | ||
69 | 32 | 13 | 2 | 1 | 0 | 219 | 107 | 13 | ||
13 | 69 | 32 | 1 | 0 | 2 | 88 | 69 | 182 | ||
34 | 14 | 66 | 0 | 2 | 1 | 34 | 164 | 141 | ||
66 | 34 | 14 | 2 | 1 | 0 | 216 | 109 | 14 | ||
14 | 66 | 34 | 1 | 0 | 2 | 89 | 66 | 184 | ||
31 | 15 | 68 | 0 | 2 | 1 | 31 | 165 | 143 | ||
68 | 31 | 15 | 2 | 1 | 0 | 218 | 106 | 15 | ||
15 | 68 | 31 | 1 | 0 | 2 | 90 | 68 | 181 | ||
43 | 16 | 55 | 0 | 2 | 1 | 43 | 166 | 130 | ||
55 | 43 | 16 | 2 | 1 | 0 | 205 | 118 | 16 | ||
16 | 55 | 43 | 1 | 0 | 2 | 91 | 55 | 193 | ||
45 | 17 | 52 | 0 | 2 | 1 | 45 | 167 | 127 | ||
52 | 45 | 17 | 2 | 1 | 0 | 202 | 120 | 17 | ||
17 | 52 | 45 | 1 | 0 | 2 | 92 | 52 | 195 | ||
42 | 18 | 54 | 0 | 2 | 1 | 42 | 168 | 129 | ||
54 | 42 | 18 | 2 | 1 | 0 | 204 | 117 | 18 | ||
18 | 54 | 42 | 1 | 0 | 2 | 93 | 54 | 192 | ||
44 | 19 | 51 | 0 | 2 | 1 | 44 | 169 | 126 | ||
51 | 44 | 19 | 2 | 1 | 0 | 201 | 119 | 19 | ||
19 | 51 | 44 | 1 | 0 | 2 | 94 | 51 | 194 | ||
41 | 20 | 53 | 0 | 2 | 1 | 41 | 170 | 128 | ||
53 | 41 | 20 | 2 | 1 | 0 | 203 | 116 | 20 | ||
20 | 53 | 41 | 1 | 0 | 2 | 95 | 53 | 191 | ||
28 | 21 | 65 | 0 | 2 | 1 | 28 | 171 | 140 | ||
65 | 28 | 21 | 2 | 1 | 0 | 215 | 103 | 21 | ||
21 | 65 | 28 | 1 | 0 | 2 | 96 | 65 | 178 | ||
30 | 22 | 62 | 0 | 2 | 1 | 30 | 172 | 137 | ||
62 | 30 | 22 | 2 | 1 | 0 | 212 | 105 | 22 | ||
22 | 62 | 30 | 1 | 0 | 2 | 97 | 62 | 180 | ||
27 | 23 | 64 | 0 | 2 | 1 | 27 | 173 | 139 | ||
64 | 27 | 23 | 2 | 1 | 0 | 214 | 102 | 23 | ||
23 | 64 | 27 | 1 | 0 | 2 | 98 | 64 | 177 | ||
29 | 24 | 61 | 0 | 2 | 1 | 29 | 174 | 136 | ||
61 | 29 | 24 | 2 | 1 | 0 | 211 | 104 | 24 | ||
24 | 61 | 29 | 1 | 0 | 2 | 99 | 61 | 179 | ||
26 | 25 | 63 | 0 | 2 | 1 | 26 | 175 | 138 | ||
63 | 26 | 25 | 2 | 1 | 0 | 213 | 101 | 25 | ||
25 | 63 | 26 | 1 | 0 | 2 | 100 | 63 | 176 |
Voeg nu de 25 (semi)magische 3x3 vierkanten samen (dit kan b.v. ook op volgorde van het middelste getal van het 3x3 deelvierkant):
15x15 magisch vierkant
26 | 175 | 138 | 27 | 173 | 139 | 28 | 171 | 140 | 29 | 174 | 136 | 30 | 172 | 137 |
213 | 101 | 25 | 214 | 102 | 23 | 215 | 103 | 21 | 211 | 104 | 24 | 212 | 105 | 22 |
100 | 63 | 176 | 98 | 64 | 177 | 96 | 65 | 178 | 99 | 61 | 179 | 97 | 62 | 180 |
31 | 165 | 143 | 32 | 163 | 144 | 33 | 161 | 145 | 34 | 164 | 141 | 35 | 162 | 142 |
218 | 106 | 15 | 219 | 107 | 13 | 220 | 108 | 11 | 216 | 109 | 14 | 217 | 110 | 12 |
90 | 68 | 181 | 88 | 69 | 182 | 86 | 70 | 183 | 89 | 66 | 184 | 87 | 67 | 185 |
36 | 155 | 148 | 37 | 153 | 149 | 38 | 151 | 150 | 39 | 154 | 146 | 40 | 152 | 147 |
223 | 111 | 5 | 224 | 112 | 3 | 225 | 113 | 1 | 221 | 114 | 4 | 222 | 115 | 2 |
80 | 73 | 186 | 78 | 74 | 187 | 76 | 75 | 188 | 79 | 71 | 189 | 77 | 72 | 190 |
41 | 170 | 128 | 42 | 168 | 129 | 43 | 166 | 130 | 44 | 169 | 126 | 45 | 167 | 127 |
203 | 116 | 20 | 204 | 117 | 18 | 205 | 118 | 16 | 201 | 119 | 19 | 202 | 120 | 17 |
95 | 53 | 191 | 93 | 54 | 192 | 91 | 55 | 193 | 94 | 51 | 194 | 92 | 52 | 195 |
46 | 160 | 133 | 47 | 158 | 134 | 48 | 156 | 135 | 49 | 159 | 131 | 50 | 157 | 132 |
208 | 121 | 10 | 209 | 122 | 8 | 210 | 123 | 6 | 206 | 124 | 9 | 207 | 125 | 7 |
85 | 58 | 196 | 83 | 59 | 197 | 81 | 60 | 198 | 84 | 56 | 199 | 82 | 57 | 200 |
Dit 15x15 magisch vierkant is kloppend voor 1/5 rij/kolom en 3x3 compact.
Zie methode samengesteld, proportioneel (1) op deze website uitgewerkt voor
8x8, 9x9, 12x12a, 12x12b, 15x15a, 15x15b, 16x16a, 16x16b, 18x18, 20x20a, 20x20b, 21x21a, 21x21b, 24x24a, 24x24b, 24x24c, 27x27a, 27x27b, 28x28a, 28x28b, 30x30a, 30x30b, 32x32a, 32x32b, 32x32c