Gebruik 4x hetzelfde Franklin panmagisch 8x8 vierkant en twee reflecterende patronen om een meest perfect Franklin panmagisch 16x16 vierkant te maken.
Neem 1x getal
1 | 60 | 22 | 47 | 2 | 59 | 21 | 48 | 1 | 60 | 22 | 47 | 2 | 59 | 21 | 48 |
56 | 13 | 35 | 26 | 55 | 14 | 36 | 25 | 56 | 13 | 35 | 26 | 55 | 14 | 36 | 25 |
43 | 18 | 64 | 5 | 44 | 17 | 63 | 6 | 43 | 18 | 64 | 5 | 44 | 17 | 63 | 6 |
30 | 39 | 9 | 52 | 29 | 40 | 10 | 51 | 30 | 39 | 9 | 52 | 29 | 40 | 10 | 51 |
3 | 58 | 24 | 45 | 4 | 57 | 23 | 46 | 3 | 58 | 24 | 45 | 4 | 57 | 23 | 46 |
54 | 15 | 33 | 28 | 53 | 16 | 34 | 27 | 54 | 15 | 33 | 28 | 53 | 16 | 34 | 27 |
41 | 20 | 62 | 7 | 42 | 19 | 61 | 8 | 41 | 20 | 62 | 7 | 42 | 19 | 61 | 8 |
32 | 37 | 11 | 50 | 31 | 38 | 12 | 49 | 32 | 37 | 11 | 50 | 31 | 38 | 12 | 49 |
1 | 60 | 22 | 47 | 2 | 59 | 21 | 48 | 1 | 60 | 22 | 47 | 2 | 59 | 21 | 48 |
56 | 13 | 35 | 26 | 55 | 14 | 36 | 25 | 56 | 13 | 35 | 26 | 55 | 14 | 36 | 25 |
43 | 18 | 64 | 5 | 44 | 17 | 63 | 6 | 43 | 18 | 64 | 5 | 44 | 17 | 63 | 6 |
30 | 39 | 9 | 52 | 29 | 40 | 10 | 51 | 30 | 39 | 9 | 52 | 29 | 40 | 10 | 51 |
3 | 58 | 24 | 45 | 4 | 57 | 23 | 46 | 3 | 58 | 24 | 45 | 4 | 57 | 23 | 46 |
54 | 15 | 33 | 28 | 53 | 16 | 34 | 27 | 54 | 15 | 33 | 28 | 53 | 16 | 34 | 27 |
41 | 20 | 62 | 7 | 42 | 19 | 61 | 8 | 41 | 20 | 62 | 7 | 42 | 19 | 61 | 8 |
32 | 37 | 11 | 50 | 31 | 38 | 12 | 49 | 32 | 37 | 11 | 50 | 31 | 38 | 12 | 49 |
+64x getal
0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
+128x getal
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
Meest perfect Franklin panmagisch 16x16 vierkant
1 | 252 | 86 | 175 | 2 | 251 | 85 | 176 | 65 | 188 | 22 | 239 | 66 | 187 | 21 | 240 |
248 | 13 | 163 | 90 | 247 | 14 | 164 | 89 | 184 | 77 | 227 | 26 | 183 | 78 | 228 | 25 |
171 | 82 | 256 | 5 | 172 | 81 | 255 | 6 | 235 | 18 | 192 | 69 | 236 | 17 | 191 | 70 |
94 | 167 | 9 | 244 | 93 | 168 | 10 | 243 | 30 | 231 | 73 | 180 | 29 | 232 | 74 | 179 |
3 | 250 | 88 | 173 | 4 | 249 | 87 | 174 | 67 | 186 | 24 | 237 | 68 | 185 | 23 | 238 |
246 | 15 | 161 | 92 | 245 | 16 | 162 | 91 | 182 | 79 | 225 | 28 | 181 | 80 | 226 | 27 |
169 | 84 | 254 | 7 | 170 | 83 | 253 | 8 | 233 | 20 | 190 | 71 | 234 | 19 | 189 | 72 |
96 | 165 | 11 | 242 | 95 | 166 | 12 | 241 | 32 | 229 | 75 | 178 | 31 | 230 | 76 | 177 |
129 | 124 | 214 | 47 | 130 | 123 | 213 | 48 | 193 | 60 | 150 | 111 | 194 | 59 | 149 | 112 |
120 | 141 | 35 | 218 | 119 | 142 | 36 | 217 | 56 | 205 | 99 | 154 | 55 | 206 | 100 | 153 |
43 | 210 | 128 | 133 | 44 | 209 | 127 | 134 | 107 | 146 | 64 | 197 | 108 | 145 | 63 | 198 |
222 | 39 | 137 | 116 | 221 | 40 | 138 | 115 | 158 | 103 | 201 | 52 | 157 | 104 | 202 | 51 |
131 | 122 | 216 | 45 | 132 | 121 | 215 | 46 | 195 | 58 | 152 | 109 | 196 | 57 | 151 | 110 |
118 | 143 | 33 | 220 | 117 | 144 | 34 | 219 | 54 | 207 | 97 | 156 | 53 | 208 | 98 | 155 |
41 | 212 | 126 | 135 | 42 | 211 | 125 | 136 | 105 | 148 | 62 | 199 | 106 | 147 | 61 | 200 |
224 | 37 | 139 | 114 | 223 | 38 | 140 | 113 | 160 | 101 | 203 | 50 | 159 | 102 | 204 | 49 |
Dit 16x16 magisch vierkant is panmagisch, 2x2 compact en kloppend voor elke 1/4 rij/ kolom/diagonaal. Stel ook vast dat het 16x16 magisch vierkant de strakke 'Willem Barink' structuur heeft.
Deze methode werkt voor elke grootte is veelvoud van 4 vanaf 8x8. Zie uitgewerkt voor 8x8, 12x12, 16x16 (1a), 16x16 (1b), 16x16 (1c), 20x20, 24x24 (1a), 24x24 (1b), 28x28, 32x32 (1a), 32x32 (1b), 32x32 (1c) en 32x32 (1d)
Als je deze methode iets anders uitwerkt, dan krijg je het perfecte magische vierkant