Je kunt ook een 16x16 meest perfect magisch vierkant maken met vier (4x4) Sudoku-patronen. Zie voor meer uitleg het 4x4 (Sudoku) en het 8x8 (Sudoku) magische vierkant.
Neem 4x getal uit het 1e patroon +1 + 1x getal uit het 2e patroon
0 |
1 |
2 |
3 |
0 |
1 |
2 |
3 |
0 |
1 |
2 |
3 |
0 |
1 |
2 |
3 |
0 |
1 |
3 |
2 |
2 |
3 |
1 |
0 |
0 |
1 |
3 |
2 |
2 |
3 |
1 |
0 |
||
3 |
2 |
1 |
0 |
3 |
2 |
1 |
0 |
3 |
2 |
1 |
0 |
3 |
2 |
1 |
0 |
3 |
2 |
0 |
1 |
1 |
0 |
2 |
3 |
3 |
2 |
0 |
1 |
1 |
0 |
2 |
3 |
||
1 |
0 |
3 |
2 |
1 |
0 |
3 |
2 |
1 |
0 |
3 |
2 |
1 |
0 |
3 |
2 |
0 |
1 |
3 |
2 |
2 |
3 |
1 |
0 |
0 |
1 |
3 |
2 |
2 |
3 |
1 |
0 |
||
2 |
3 |
0 |
1 |
2 |
3 |
0 |
1 |
2 |
3 |
0 |
1 |
2 |
3 |
0 |
1 |
3 |
2 |
0 |
1 |
1 |
0 |
2 |
3 |
3 |
2 |
0 |
1 |
1 |
0 |
2 |
3 |
||
0 |
1 |
2 |
3 |
0 |
1 |
2 |
3 |
0 |
1 |
2 |
3 |
0 |
1 |
2 |
3 |
0 |
1 |
3 |
2 |
2 |
3 |
1 |
0 |
0 |
1 |
3 |
2 |
2 |
3 |
1 |
0 |
||
3 |
2 |
1 |
0 |
3 |
2 |
1 |
0 |
3 |
2 |
1 |
0 |
3 |
2 |
1 |
0 |
3 |
2 |
0 |
1 |
1 |
0 |
2 |
3 |
3 |
2 |
0 |
1 |
1 |
0 |
2 |
3 |
||
1 |
0 |
3 |
2 |
1 |
0 |
3 |
2 |
1 |
0 |
3 |
2 |
1 |
0 |
3 |
2 |
0 |
1 |
3 |
2 |
2 |
3 |
1 |
0 |
0 |
1 |
3 |
2 |
2 |
3 |
1 |
0 |
||
2 |
3 |
0 |
1 |
2 |
3 |
0 |
1 |
2 |
3 |
0 |
1 |
2 |
3 |
0 |
1 |
3 |
2 |
0 |
1 |
1 |
0 |
2 |
3 |
3 |
2 |
0 |
1 |
1 |
0 |
2 |
3 |
||
0 |
1 |
2 |
3 |
0 |
1 |
2 |
3 |
0 |
1 |
2 |
3 |
0 |
1 |
2 |
3 |
0 |
1 |
3 |
2 |
2 |
3 |
1 |
0 |
0 |
1 |
3 |
2 |
2 |
3 |
1 |
0 |
||
3 |
2 |
1 |
0 |
3 |
2 |
1 |
0 |
3 |
2 |
1 |
0 |
3 |
2 |
1 |
0 |
3 |
2 |
0 |
1 |
1 |
0 |
2 |
3 |
3 |
2 |
0 |
1 |
1 |
0 |
2 |
3 |
||
1 |
0 |
3 |
2 |
1 |
0 |
3 |
2 |
1 |
0 |
3 |
2 |
1 |
0 |
3 |
2 |
0 |
1 |
3 |
2 |
2 |
3 |
1 |
0 |
0 |
1 |
3 |
2 |
2 |
3 |
1 |
0 |
||
2 |
3 |
0 |
1 |
2 |
3 |
0 |
1 |
2 |
3 |
0 |
1 |
2 |
3 |
0 |
1 |
3 |
2 |
0 |
1 |
1 |
0 |
2 |
3 |
3 |
2 |
0 |
1 |
1 |
0 |
2 |
3 |
||
0 |
1 |
2 |
3 |
0 |
1 |
2 |
3 |
0 |
1 |
2 |
3 |
0 |
1 |
2 |
3 |
0 |
1 |
3 |
2 |
2 |
3 |
1 |
0 |
0 |
1 |
3 |
2 |
2 |
3 |
1 |
0 |
||
3 |
2 |
1 |
0 |
3 |
2 |
1 |
0 |
3 |
2 |
1 |
0 |
3 |
2 |
1 |
0 |
3 |
2 |
0 |
1 |
1 |
0 |
2 |
3 |
3 |
2 |
0 |
1 |
1 |
0 |
2 |
3 |
||
1 |
0 |
3 |
2 |
1 |
0 |
3 |
2 |
1 |
0 |
3 |
2 |
1 |
0 |
3 |
2 |
0 |
1 |
3 |
2 |
2 |
3 |
1 |
0 |
0 |
1 |
3 |
2 |
2 |
3 |
1 |
0 |
||
2 |
3 |
0 |
1 |
2 |
3 |
0 |
1 |
2 |
3 |
0 |
1 |
2 |
3 |
0 |
1 |
3 |
2 |
0 |
1 |
1 |
0 |
2 |
3 |
3 |
2 |
0 |
1 |
1 |
0 |
2 |
3 |
+16x getal uit het 3e (vaste) patroon + 64x getal uit het 4e (vaste) patroon
2 |
3 |
0 |
1 |
2 |
3 |
0 |
1 |
0 |
1 |
2 |
3 |
0 |
1 |
2 |
3 |
0 |
3 |
0 |
3 |
0 |
3 |
0 |
3 |
0 |
3 |
0 |
3 |
0 |
3 |
0 |
3 |
||
0 |
1 |
2 |
3 |
0 |
1 |
2 |
3 |
2 |
3 |
0 |
1 |
2 |
3 |
0 |
1 |
0 |
3 |
0 |
3 |
0 |
3 |
0 |
3 |
0 |
3 |
0 |
3 |
0 |
3 |
0 |
3 |
||
3 |
2 |
1 |
0 |
3 |
2 |
1 |
0 |
1 |
0 |
3 |
2 |
1 |
0 |
3 |
2 |
3 |
0 |
3 |
0 |
3 |
0 |
3 |
0 |
3 |
0 |
3 |
0 |
3 |
0 |
3 |
0 |
||
1 |
0 |
3 |
2 |
1 |
0 |
3 |
2 |
3 |
2 |
1 |
0 |
3 |
2 |
1 |
0 |
3 |
0 |
3 |
0 |
3 |
0 |
3 |
0 |
3 |
0 |
3 |
0 |
3 |
0 |
3 |
0 |
||
3 |
2 |
1 |
0 |
3 |
2 |
1 |
0 |
1 |
0 |
3 |
2 |
1 |
0 |
3 |
2 |
0 |
3 |
0 |
3 |
0 |
3 |
0 |
3 |
0 |
3 |
0 |
3 |
0 |
3 |
0 |
3 |
||
1 |
0 |
3 |
2 |
1 |
0 |
3 |
2 |
3 |
2 |
1 |
0 |
3 |
2 |
1 |
0 |
0 |
3 |
0 |
3 |
0 |
3 |
0 |
3 |
0 |
3 |
0 |
3 |
0 |
3 |
0 |
3 |
||
2 |
3 |
0 |
1 |
2 |
3 |
0 |
1 |
0 |
1 |
2 |
3 |
0 |
1 |
2 |
3 |
3 |
0 |
3 |
0 |
3 |
0 |
3 |
0 |
3 |
0 |
3 |
0 |
3 |
0 |
3 |
0 |
||
0 |
1 |
2 |
3 |
0 |
1 |
2 |
3 |
2 |
3 |
0 |
1 |
2 |
3 |
0 |
1 |
3 |
0 |
3 |
0 |
3 |
0 |
3 |
0 |
3 |
0 |
3 |
0 |
3 |
0 |
3 |
0 |
||
2 |
3 |
0 |
1 |
2 |
3 |
0 |
1 |
0 |
1 |
2 |
3 |
0 |
1 |
2 |
3 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
||
0 |
1 |
2 |
3 |
0 |
1 |
2 |
3 |
2 |
3 |
0 |
1 |
2 |
3 |
0 |
1 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
||
3 |
2 |
1 |
0 |
3 |
2 |
1 |
0 |
1 |
0 |
3 |
2 |
1 |
0 |
3 |
2 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
||
1 |
0 |
3 |
2 |
1 |
0 |
3 |
2 |
3 |
2 |
1 |
0 |
3 |
2 |
1 |
0 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
||
3 |
2 |
1 |
0 |
3 |
2 |
1 |
0 |
1 |
0 |
3 |
2 |
1 |
0 |
3 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
||
1 |
0 |
3 |
2 |
1 |
0 |
3 |
2 |
3 |
2 |
1 |
0 |
3 |
2 |
1 |
0 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
||
2 |
3 |
0 |
1 |
2 |
3 |
0 |
1 |
0 |
1 |
2 |
3 |
0 |
1 |
2 |
3 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
||
0 |
1 |
2 |
3 |
0 |
1 |
2 |
3 |
2 |
3 |
0 |
1 |
2 |
3 |
0 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
= Meest perfect (Franklin pan)magisch 16x16 vierkant
33 |
246 |
12 |
223 |
35 |
248 |
10 |
221 |
1 |
214 |
44 |
255 |
3 |
216 |
42 |
253 |
16 |
219 |
37 |
242 |
14 |
217 |
39 |
244 |
48 |
251 |
5 |
210 |
46 |
249 |
7 |
212 |
245 |
34 |
224 |
11 |
247 |
36 |
222 |
9 |
213 |
2 |
256 |
43 |
215 |
4 |
254 |
41 |
220 |
15 |
241 |
38 |
218 |
13 |
243 |
40 |
252 |
47 |
209 |
6 |
250 |
45 |
211 |
8 |
49 |
230 |
28 |
207 |
51 |
232 |
26 |
205 |
17 |
198 |
60 |
239 |
19 |
200 |
58 |
237 |
32 |
203 |
53 |
226 |
30 |
201 |
55 |
228 |
64 |
235 |
21 |
194 |
62 |
233 |
23 |
196 |
229 |
50 |
208 |
27 |
231 |
52 |
206 |
25 |
197 |
18 |
240 |
59 |
199 |
20 |
238 |
57 |
204 |
31 |
225 |
54 |
202 |
29 |
227 |
56 |
236 |
63 |
193 |
22 |
234 |
61 |
195 |
24 |
97 |
182 |
76 |
159 |
99 |
184 |
74 |
157 |
65 |
150 |
108 |
191 |
67 |
152 |
106 |
189 |
80 |
155 |
101 |
178 |
78 |
153 |
103 |
180 |
112 |
187 |
69 |
146 |
110 |
185 |
71 |
148 |
181 |
98 |
160 |
75 |
183 |
100 |
158 |
73 |
149 |
66 |
192 |
107 |
151 |
68 |
190 |
105 |
156 |
79 |
177 |
102 |
154 |
77 |
179 |
104 |
188 |
111 |
145 |
70 |
186 |
109 |
147 |
72 |
113 |
166 |
92 |
143 |
115 |
168 |
90 |
141 |
81 |
134 |
124 |
175 |
83 |
136 |
122 |
173 |
96 |
139 |
117 |
162 |
94 |
137 |
119 |
164 |
128 |
171 |
85 |
130 |
126 |
169 |
87 |
132 |
165 |
114 |
144 |
91 |
167 |
116 |
142 |
89 |
133 |
82 |
176 |
123 |
135 |
84 |
174 |
121 |
140 |
95 |
161 |
118 |
138 |
93 |
163 |
120 |
172 |
127 |
129 |
86 |
170 |
125 |
131 |
88 |
Deze methode (Sudokumethode 1) werkt voor grootte (orde) is 2^n (= 2x2, 2x2x2, 2x2x2x2, ...) vanaf 4x4 tot oneindig. Zie uitgewerkt voor 4x4, 8x8, 16x16, 32x32