De Lozenge methode van John Horton Conway levert een oneven magisch vierkant op, waarbij alle oneven getallen zich in de (witte) 'diamant' bevinden en alle even getallen daarbuiten (in het donkere gebied). Zie voor gedetailleerde uitleg het Lozenge 5x5 magisch vierkant.
Neem 1x getal uit rijpatroon +1
8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 0 | 1 | 2 | 3 | 4 | 5 |
5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 0 | 1 | 2 | 3 | 4 |
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 0 | 1 | 2 | 3 |
3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 0 | 1 | 2 |
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 0 | 1 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 0 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
16 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
15 | 16 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
14 | 15 | 16 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
13 | 14 | 15 | 16 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
12 | 13 | 14 | 15 | 16 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
11 | 12 | 13 | 14 | 15 | 16 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
10 | 11 | 12 | 13 | 14 | 15 | 16 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
+ 17x getal uit kolompatroon
9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
10 | 11 | 12 | 13 | 14 | 15 | 16 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
11 | 12 | 13 | 14 | 15 | 16 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
12 | 13 | 14 | 15 | 16 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
13 | 14 | 15 | 16 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
14 | 15 | 16 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
15 | 16 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
16 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 0 |
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 0 | 1 |
3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 0 | 1 | 2 |
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 0 | 1 | 2 | 3 |
5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 0 | 1 | 2 | 3 | 4 |
6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 0 | 1 | 2 | 3 | 4 | 5 |
7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
= 17x17 Lozenge magisch vierkant
162 | 180 | 198 | 216 | 234 | 252 | 270 | 288 | 17 | 18 | 36 | 54 | 72 | 90 | 108 | 126 | 144 |
178 | 196 | 214 | 232 | 250 | 268 | 286 | 15 | 33 | 51 | 52 | 70 | 88 | 106 | 124 | 142 | 160 |
194 | 212 | 230 | 248 | 266 | 284 | 13 | 31 | 49 | 67 | 85 | 86 | 104 | 122 | 140 | 158 | 176 |
210 | 228 | 246 | 264 | 282 | 11 | 29 | 47 | 65 | 83 | 101 | 119 | 120 | 138 | 156 | 174 | 192 |
226 | 244 | 262 | 280 | 9 | 27 | 45 | 63 | 81 | 99 | 117 | 135 | 153 | 154 | 172 | 190 | 208 |
242 | 260 | 278 | 7 | 25 | 43 | 61 | 79 | 97 | 115 | 133 | 151 | 169 | 187 | 188 | 206 | 224 |
258 | 276 | 5 | 23 | 41 | 59 | 77 | 95 | 113 | 131 | 149 | 167 | 185 | 203 | 221 | 222 | 240 |
274 | 3 | 21 | 39 | 57 | 75 | 93 | 111 | 129 | 147 | 165 | 183 | 201 | 219 | 237 | 255 | 256 |
1 | 19 | 37 | 55 | 73 | 91 | 109 | 127 | 145 | 163 | 181 | 199 | 217 | 235 | 253 | 271 | 289 |
34 | 35 | 53 | 71 | 89 | 107 | 125 | 143 | 161 | 179 | 197 | 215 | 233 | 251 | 269 | 287 | 16 |
50 | 68 | 69 | 87 | 105 | 123 | 141 | 159 | 177 | 195 | 213 | 231 | 249 | 267 | 285 | 14 | 32 |
66 | 84 | 102 | 103 | 121 | 139 | 157 | 175 | 193 | 211 | 229 | 247 | 265 | 283 | 12 | 30 | 48 |
82 | 100 | 118 | 136 | 137 | 155 | 173 | 191 | 209 | 227 | 245 | 263 | 281 | 10 | 28 | 46 | 64 |
98 | 116 | 134 | 152 | 170 | 171 | 189 | 207 | 225 | 243 | 261 | 279 | 8 | 26 | 44 | 62 | 80 |
114 | 132 | 150 | 168 | 186 | 204 | 205 | 223 | 241 | 259 | 277 | 6 | 24 | 42 | 60 | 78 | 96 |
130 | 148 | 166 | 184 | 202 | 220 | 238 | 239 | 257 | 275 | 4 | 22 | 40 | 58 | 76 | 94 | 112 |
146 | 164 | 182 | 200 | 218 | 236 | 254 | 272 | 273 | 2 | 20 | 38 | 56 | 74 | 92 | 110 | 128 |
Deze methode werkt voor elke grootte (orde) is oneven vanaf 3x3 tot oneindig. Zie uitgewerkt voor 3x3, 5x5, 7x7, 9x9, 11x11, 13x13, 15x15, 17x17, 19x19, 21x21, 23x23, 25x25, 27x27, 29x29, 31x31