Met de methode van Strachey wordt het 18x18 magisch vierkant opgebouwd uit 4 magische 9x9 vierkanten en moeten veel getallen worden omgewisseld om het 18x18 magisch vierkant kloppend te krijgen. Met de alternatieve methode van Strachey maken we de 4 magische 9x9 vierkanten wat meer evenredig, waardoor er veel minder getallen hoeven worden omgewisseld om het 18x18 magische vierkant kloppend te krijgen.
We gebruiken onderstaande tabel om de kolomcoördinaten van de 9x9 vierkanten zo evenredig mogelijk te verdelen.
0 | 0 | 0 | 3 | 3 | 3 | 0 | 2 | 3 | 14 | 0 | 4 | 8 | 15 | 19 | 23 | 24 | 30 | 35 | 158 | |||
3 | 3 | 3 | 0 | 0 | 0 | 3 | 0 | 1 | 13 | 3 | 7 | 11 | 12 | 16 | 20 | 27 | 28 | 33 | 157 | |||
1 | 1 | 1 | 2 | 2 | 2 | 1 | 3 | 0 | 13 | 1 | 5 | 9 | 14 | 18 | 22 | 25 | 31 | 32 | 157 | |||
2 | 2 | 2 | 1 | 1 | 1 | 2 | 1 | 2 | 14 | 2 | 6 | 10 | 13 | 17 | 21 | 26 | 29 | 34 | 158 |
9x kolomcoördinaat + rijcoördinaat +1 = 9x9 magisch vierkant
1467 | 1467 | 1467 | 1467 | 1467 | 1467 | 1467 | 1467 | 1467 | |||||||||||||||||||||||
1467 | 1476 | ||||||||||||||||||||||||||||||
0 | 8 | 4 | 24 | 35 | 30 | 15 | 23 | 19 | 2 | 1 | 5 | 4 | 3 | 7 | 6 | 8 | 0 | 1467 | 3 | 74 | 42 | 221 | 319 | 278 | 142 | 216 | 172 | ||||
23 | 19 | 0 | 8 | 4 | 24 | 35 | 30 | 15 | 5 | 4 | 3 | 7 | 6 | 8 | 0 | 2 | 1 | 1467 | 213 | 176 | 4 | 80 | 43 | 225 | 316 | 273 | 137 | ||||
30 | 15 | 23 | 19 | 0 | 8 | 4 | 24 | 35 | 3 | 7 | 6 | 8 | 0 | 2 | 1 | 5 | 4 | 1467 | 274 | 143 | 214 | 180 | 1 | 75 | 38 | 222 | 320 | ||||
24 | 35 | 30 | 15 | 23 | 19 | 0 | 8 | 4 | 6 | 8 | 0 | 2 | 1 | 5 | 4 | 3 | 7 | 1467 | 223 | 324 | 271 | 138 | 209 | 177 | 5 | 76 | 44 | ||||
8 | 4 | 24 | 35 | 30 | 15 | 23 | 19 | 0 | 0 | 2 | 1 | 5 | 4 | 3 | 7 | 6 | 8 | 1467 | 73 | 39 | 218 | 321 | 275 | 139 | 215 | 178 | 9 | ||||
19 | 0 | 8 | 4 | 24 | 35 | 30 | 15 | 23 | 1 | 5 | 4 | 3 | 7 | 6 | 8 | 0 | 2 | 1467 | 173 | 6 | 77 | 40 | 224 | 322 | 279 | 136 | 210 | ||||
15 | 23 | 19 | 0 | 8 | 4 | 24 | 35 | 30 | 4 | 3 | 7 | 6 | 8 | 0 | 2 | 1 | 5 | 1467 | 140 | 211 | 179 | 7 | 81 | 37 | 219 | 317 | 276 | ||||
35 | 30 | 15 | 23 | 19 | 0 | 8 | 4 | 24 | 7 | 6 | 8 | 0 | 2 | 1 | 5 | 4 | 3 | 1467 | 323 | 277 | 144 | 208 | 174 | 2 | 78 | 41 | 220 | ||||
4 | 24 | 35 | 30 | 15 | 23 | 19 | 0 | 8 | 8 | 0 | 2 | 1 | 5 | 4 | 3 | 7 | 6 | 1467 | 45 | 217 | 318 | 272 | 141 | 212 | 175 | 8 | 79 | ||||
1458 | 1458 | 1458 | 1458 | 1458 | 1458 | 1458 | 1458 | 1458 | |||||||||||||||||||||||
1458 | 1422 | ||||||||||||||||||||||||||||||
3 | 11 | 7 | 27 | 33 | 28 | 12 | 20 | 16 | 2 | 1 | 5 | 4 | 3 | 7 | 6 | 8 | 0 | 1458 | 30 | 101 | 69 | 248 | 301 | 260 | 115 | 189 | 145 | ||||
20 | 16 | 3 | 11 | 7 | 27 | 33 | 28 | 12 | 5 | 4 | 3 | 7 | 6 | 8 | 0 | 2 | 1 | 1458 | 186 | 149 | 31 | 107 | 70 | 252 | 298 | 255 | 110 | ||||
28 | 12 | 20 | 16 | 3 | 11 | 7 | 27 | 33 | 3 | 7 | 6 | 8 | 0 | 2 | 1 | 5 | 4 | 1458 | 256 | 116 | 187 | 153 | 28 | 102 | 65 | 249 | 302 | ||||
27 | 33 | 28 | 12 | 20 | 16 | 3 | 11 | 7 | 6 | 8 | 0 | 2 | 1 | 5 | 4 | 3 | 7 | 1458 | 250 | 306 | 253 | 111 | 182 | 150 | 32 | 103 | 71 | ||||
11 | 7 | 27 | 33 | 28 | 12 | 20 | 16 | 3 | 0 | 2 | 1 | 5 | 4 | 3 | 7 | 6 | 8 | 1458 | 100 | 66 | 245 | 303 | 257 | 112 | 188 | 151 | 36 | ||||
16 | 3 | 11 | 7 | 27 | 33 | 28 | 12 | 20 | 1 | 5 | 4 | 3 | 7 | 6 | 8 | 0 | 2 | 1458 | 146 | 33 | 104 | 67 | 251 | 304 | 261 | 109 | 183 | ||||
12 | 20 | 16 | 3 | 11 | 7 | 27 | 33 | 28 | 4 | 3 | 7 | 6 | 8 | 0 | 2 | 1 | 5 | 1458 | 113 | 184 | 152 | 34 | 108 | 64 | 246 | 299 | 258 | ||||
33 | 28 | 12 | 20 | 16 | 3 | 11 | 7 | 27 | 7 | 6 | 8 | 0 | 2 | 1 | 5 | 4 | 3 | 1458 | 305 | 259 | 117 | 181 | 147 | 29 | 105 | 68 | 247 | ||||
7 | 27 | 33 | 28 | 12 | 20 | 16 | 3 | 11 | 8 | 0 | 2 | 1 | 5 | 4 | 3 | 7 | 6 | 1458 | 72 | 244 | 300 | 254 | 114 | 185 | 148 | 35 | 106 | ||||
1458 | 1458 | 1458 | 1458 | 1458 | 1458 | 1458 | 1458 | 1458 | |||||||||||||||||||||||
1458 | 1503 | ||||||||||||||||||||||||||||||
1 | 9 | 5 | 25 | 32 | 31 | 14 | 22 | 18 | 2 | 1 | 5 | 4 | 3 | 7 | 6 | 8 | 0 | 1458 | 12 | 83 | 51 | 230 | 292 | 287 | 133 | 207 | 163 | ||||
22 | 18 | 1 | 9 | 5 | 25 | 32 | 31 | 14 | 5 | 4 | 3 | 7 | 6 | 8 | 0 | 2 | 1 | 1458 | 204 | 167 | 13 | 89 | 52 | 234 | 289 | 282 | 128 | ||||
31 | 14 | 22 | 18 | 1 | 9 | 5 | 25 | 32 | 3 | 7 | 6 | 8 | 0 | 2 | 1 | 5 | 4 | 1458 | 283 | 134 | 205 | 171 | 10 | 84 | 47 | 231 | 293 | ||||
25 | 32 | 31 | 14 | 22 | 18 | 1 | 9 | 5 | 6 | 8 | 0 | 2 | 1 | 5 | 4 | 3 | 7 | 1458 | 232 | 297 | 280 | 129 | 200 | 168 | 14 | 85 | 53 | ||||
9 | 5 | 25 | 32 | 31 | 14 | 22 | 18 | 1 | 0 | 2 | 1 | 5 | 4 | 3 | 7 | 6 | 8 | 1458 | 82 | 48 | 227 | 294 | 284 | 130 | 206 | 169 | 18 | ||||
18 | 1 | 9 | 5 | 25 | 32 | 31 | 14 | 22 | 1 | 5 | 4 | 3 | 7 | 6 | 8 | 0 | 2 | 1458 | 164 | 15 | 86 | 49 | 233 | 295 | 288 | 127 | 201 | ||||
14 | 22 | 18 | 1 | 9 | 5 | 25 | 32 | 31 | 4 | 3 | 7 | 6 | 8 | 0 | 2 | 1 | 5 | 1458 | 131 | 202 | 170 | 16 | 90 | 46 | 228 | 290 | 285 | ||||
32 | 31 | 14 | 22 | 18 | 1 | 9 | 5 | 25 | 7 | 6 | 8 | 0 | 2 | 1 | 5 | 4 | 3 | 1458 | 296 | 286 | 135 | 199 | 165 | 11 | 87 | 50 | 229 | ||||
5 | 25 | 32 | 31 | 14 | 22 | 18 | 1 | 9 | 8 | 0 | 2 | 1 | 5 | 4 | 3 | 7 | 6 | 1458 | 54 | 226 | 291 | 281 | 132 | 203 | 166 | 17 | 88 | ||||
1467 | 1467 | 1467 | 1467 | 1467 | 1467 | 1467 | 1467 | 1467 | |||||||||||||||||||||||
1467 | 1449 | ||||||||||||||||||||||||||||||
2 | 10 | 6 | 26 | 34 | 29 | 13 | 21 | 17 | 2 | 1 | 5 | 4 | 3 | 7 | 6 | 8 | 0 | 1467 | 21 | 92 | 60 | 239 | 310 | 269 | 124 | 198 | 154 | ||||
21 | 17 | 2 | 10 | 6 | 26 | 34 | 29 | 13 | 5 | 4 | 3 | 7 | 6 | 8 | 0 | 2 | 1 | 1467 | 195 | 158 | 22 | 98 | 61 | 243 | 307 | 264 | 119 | ||||
29 | 13 | 21 | 17 | 2 | 10 | 6 | 26 | 34 | 3 | 7 | 6 | 8 | 0 | 2 | 1 | 5 | 4 | 1467 | 265 | 125 | 196 | 162 | 19 | 93 | 56 | 240 | 311 | ||||
26 | 34 | 29 | 13 | 21 | 17 | 2 | 10 | 6 | 6 | 8 | 0 | 2 | 1 | 5 | 4 | 3 | 7 | 1467 | 241 | 315 | 262 | 120 | 191 | 159 | 23 | 94 | 62 | ||||
10 | 6 | 26 | 34 | 29 | 13 | 21 | 17 | 2 | 0 | 2 | 1 | 5 | 4 | 3 | 7 | 6 | 8 | 1467 | 91 | 57 | 236 | 312 | 266 | 121 | 197 | 160 | 27 | ||||
17 | 2 | 10 | 6 | 26 | 34 | 29 | 13 | 21 | 1 | 5 | 4 | 3 | 7 | 6 | 8 | 0 | 2 | 1467 | 155 | 24 | 95 | 58 | 242 | 313 | 270 | 118 | 192 | ||||
13 | 21 | 17 | 2 | 10 | 6 | 26 | 34 | 29 | 4 | 3 | 7 | 6 | 8 | 0 | 2 | 1 | 5 | 1467 | 122 | 193 | 161 | 25 | 99 | 55 | 237 | 308 | 267 | ||||
34 | 29 | 13 | 21 | 17 | 2 | 10 | 6 | 26 | 7 | 6 | 8 | 0 | 2 | 1 | 5 | 4 | 3 | 1467 | 314 | 268 | 126 | 190 | 156 | 20 | 96 | 59 | 238 | ||||
6 | 26 | 34 | 29 | 13 | 21 | 17 | 2 | 10 | 8 | 0 | 2 | 1 | 5 | 4 | 3 | 7 | 6 | 1467 | 63 | 235 | 309 | 263 | 123 | 194 | 157 | 26 | 97 |
We voegen nu de 4 magische 9x9 vierkanten samen:
Te corrigeren 18x18 magisch vierkant
2925 | 2925 | 2925 | 2925 | 2925 | 2925 | 2925 | 2925 | 2925 | 2925 | 2925 | 2925 | 2925 | 2925 | 2925 | 2925 | 2925 | 2925 | |||
2934 | 2925 | |||||||||||||||||||
2925 | 3 | 74 | 42 | 221 | 319 | 278 | 142 | 216 | 172 | 30 | 101 | 69 | 248 | 301 | 260 | 115 | 189 | 145 | ||
2925 | 213 | 176 | 4 | 80 | 43 | 225 | 316 | 273 | 137 | 186 | 149 | 31 | 107 | 70 | 252 | 298 | 255 | 110 | ||
2925 | 274 | 143 | 214 | 180 | 1 | 75 | 38 | 222 | 320 | 256 | 116 | 187 | 153 | 28 | 102 | 65 | 249 | 302 | ||
2925 | 223 | 324 | 271 | 138 | 209 | 177 | 5 | 76 | 44 | 250 | 306 | 253 | 111 | 182 | 150 | 32 | 103 | 71 | ||
2925 | 73 | 39 | 218 | 321 | 275 | 139 | 215 | 178 | 9 | 100 | 66 | 245 | 303 | 257 | 112 | 188 | 151 | 36 | ||
2925 | 173 | 6 | 77 | 40 | 224 | 322 | 279 | 136 | 210 | 146 | 33 | 104 | 67 | 251 | 304 | 261 | 109 | 183 | ||
2925 | 140 | 211 | 179 | 7 | 81 | 37 | 219 | 317 | 276 | 113 | 184 | 152 | 34 | 108 | 64 | 246 | 299 | 258 | ||
2925 | 323 | 277 | 144 | 208 | 174 | 2 | 78 | 41 | 220 | 305 | 259 | 117 | 181 | 147 | 29 | 105 | 68 | 247 | ||
2925 | 45 | 217 | 318 | 272 | 141 | 212 | 175 | 8 | 79 | 72 | 244 | 300 | 254 | 114 | 185 | 148 | 35 | 106 | ||
2925 | 12 | 83 | 51 | 230 | 292 | 287 | 133 | 207 | 163 | 21 | 92 | 60 | 239 | 310 | 269 | 124 | 198 | 154 | ||
2925 | 204 | 167 | 13 | 89 | 52 | 234 | 289 | 282 | 128 | 195 | 158 | 22 | 98 | 61 | 243 | 307 | 264 | 119 | ||
2925 | 283 | 134 | 205 | 171 | 10 | 84 | 47 | 231 | 293 | 265 | 125 | 196 | 162 | 19 | 93 | 56 | 240 | 311 | ||
2925 | 232 | 297 | 280 | 129 | 200 | 168 | 14 | 85 | 53 | 241 | 315 | 262 | 120 | 191 | 159 | 23 | 94 | 62 | ||
2925 | 82 | 48 | 227 | 294 | 284 | 130 | 206 | 169 | 18 | 91 | 57 | 236 | 312 | 266 | 121 | 197 | 160 | 27 | ||
2925 | 164 | 15 | 86 | 49 | 233 | 295 | 288 | 127 | 201 | 155 | 24 | 95 | 58 | 242 | 313 | 270 | 118 | 192 | ||
2925 | 131 | 202 | 170 | 16 | 90 | 46 | 228 | 290 | 285 | 122 | 193 | 161 | 25 | 99 | 55 | 237 | 308 | 267 | ||
2925 | 296 | 286 | 135 | 199 | 165 | 11 | 87 | 50 | 229 | 314 | 268 | 126 | 190 | 156 | 20 | 96 | 59 | 238 | ||
2925 | 54 | 226 | 291 | 281 | 132 | 203 | 166 | 17 | 88 | 63 | 235 | 309 | 263 | 123 | 194 | 157 | 26 | 97 |
Het 18x18 magisch vierkant klopt alleen niet voor de (hoofd)diagonaal van links boven naar recht onder. Door 2 x 2 (i.p.v. 63 x63 bij de methode van Strachey) getallen met elkaar om te wisselen, kunnen we dit corrigeren en krijgen we een kloppend (simpel) 18x18 magisch vierkant.
18x18 magisch vierkant
2925 | 2925 | 2925 | 2925 | 2925 | 2925 | 2925 | 2925 | 2925 | 2925 | 2925 | 2925 | 2925 | 2925 | 2925 | 2925 | 2925 | 2925 | |||
2925 | 2925 | |||||||||||||||||||
2925 | 3 | 74 | 42 | 221 | 319 | 278 | 142 | 216 | 172 | 30 | 101 | 69 | 248 | 301 | 260 | 115 | 189 | 145 | ||
2925 | 213 | 167 | 13 | 80 | 43 | 225 | 316 | 273 | 137 | 186 | 149 | 31 | 107 | 70 | 252 | 298 | 255 | 110 | ||
2925 | 274 | 143 | 214 | 180 | 1 | 75 | 38 | 222 | 320 | 256 | 116 | 187 | 153 | 28 | 102 | 65 | 249 | 302 | ||
2925 | 223 | 324 | 271 | 138 | 209 | 177 | 5 | 76 | 44 | 250 | 306 | 253 | 111 | 182 | 150 | 32 | 103 | 71 | ||
2925 | 73 | 39 | 218 | 321 | 275 | 139 | 215 | 178 | 9 | 100 | 66 | 245 | 303 | 257 | 112 | 188 | 151 | 36 | ||
2925 | 173 | 6 | 77 | 40 | 224 | 322 | 279 | 136 | 210 | 146 | 33 | 104 | 67 | 251 | 304 | 261 | 109 | 183 | ||
2925 | 140 | 211 | 179 | 7 | 81 | 37 | 219 | 317 | 276 | 113 | 184 | 152 | 34 | 108 | 64 | 246 | 299 | 258 | ||
2925 | 323 | 277 | 144 | 208 | 174 | 2 | 78 | 41 | 220 | 305 | 259 | 117 | 181 | 147 | 29 | 105 | 68 | 247 | ||
2925 | 45 | 217 | 318 | 272 | 141 | 212 | 175 | 8 | 79 | 72 | 244 | 300 | 254 | 114 | 185 | 148 | 35 | 106 | ||
2925 | 12 | 83 | 51 | 230 | 292 | 287 | 133 | 207 | 163 | 21 | 92 | 60 | 239 | 310 | 269 | 124 | 198 | 154 | ||
2925 | 204 | 176 | 4 | 89 | 52 | 234 | 289 | 282 | 128 | 195 | 158 | 22 | 98 | 61 | 243 | 307 | 264 | 119 | ||
2925 | 283 | 134 | 205 | 171 | 10 | 84 | 47 | 231 | 293 | 265 | 125 | 196 | 162 | 19 | 93 | 56 | 240 | 311 | ||
2925 | 232 | 297 | 280 | 129 | 200 | 168 | 14 | 85 | 53 | 241 | 315 | 262 | 120 | 191 | 159 | 23 | 94 | 62 | ||
2925 | 82 | 48 | 227 | 294 | 284 | 130 | 206 | 169 | 18 | 91 | 57 | 236 | 312 | 266 | 121 | 197 | 160 | 27 | ||
2925 | 164 | 15 | 86 | 49 | 233 | 295 | 288 | 127 | 201 | 155 | 24 | 95 | 58 | 242 | 313 | 270 | 118 | 192 | ||
2925 | 131 | 202 | 170 | 16 | 90 | 46 | 228 | 290 | 285 | 122 | 193 | 161 | 25 | 99 | 55 | 237 | 308 | 267 | ||
2925 | 296 | 286 | 135 | 199 | 165 | 11 | 87 | 50 | 229 | 314 | 268 | 126 | 190 | 156 | 20 | 96 | 59 | 238 | ||
2925 | 54 | 226 | 291 | 281 | 132 | 203 | 166 | 17 | 88 | 63 | 235 | 309 | 263 | 123 | 194 | 157 | 26 | 97 |
Deze methode werkt voor grootte is dubbel oneven; zie uitgewerkt voor 6x6, 10x10, 14x14, 18x18, 22x22, 26x26 en 30x30