Je kunt het 18x18 magisch vierkant opbouwen uit 9 evenredige magische 6x6 vierkanten. Evenredig betekent dat alle 9 magische 6x6 vierkanten dezelfde magische som van (1/3 x 2925 = ) 975 hebben. We gebruiken de methode met reflecterende patronen (6x6) voor het maken van de magische 6x6 vierkanten. Alleen gebruiken we nu als rijcoördinaten niet de getallen 0 t/m 5 maar 0 t/m (9x6 -/- 1 = ) 53 en we verdelen de rijcoördinaten evenredig over de 9 magische 6x6 vierkanten.
1x rijcoördinaat +54x kolomcoördinaat + 1 = magisch 6x6 vierkant
0 | 17 | 35 | 18 | 36 | 53 | 0 | 5 | 0 | 5 | 5 | 0 | 1 | 288 | 36 | 289 | 307 | 54 | ||
53 | 17 | 18 | 35 | 36 | 0 | 1 | 1 | 4 | 4 | 1 | 4 | 108 | 72 | 235 | 252 | 91 | 217 | ||
0 | 36 | 18 | 35 | 17 | 53 | 3 | 2 | 2 | 2 | 3 | 3 | 163 | 145 | 127 | 144 | 180 | 216 | ||
53 | 36 | 18 | 35 | 17 | 0 | 2 | 3 | 3 | 3 | 2 | 2 | 162 | 199 | 181 | 198 | 126 | 109 | ||
53 | 17 | 35 | 18 | 36 | 0 | 4 | 4 | 1 | 1 | 4 | 1 | 270 | 234 | 90 | 73 | 253 | 55 | ||
0 | 36 | 35 | 18 | 17 | 53 | 5 | 0 | 5 | 0 | 0 | 5 | 271 | 37 | 306 | 19 | 18 | 324 | ||
1 | 16 | 34 | 19 | 37 | 52 | 0 | 5 | 0 | 5 | 5 | 0 | 2 | 287 | 35 | 290 | 308 | 53 | ||
52 | 16 | 19 | 34 | 37 | 1 | 1 | 1 | 4 | 4 | 1 | 4 | 107 | 71 | 236 | 251 | 92 | 218 | ||
1 | 37 | 19 | 34 | 16 | 52 | 3 | 2 | 2 | 2 | 3 | 3 | 164 | 146 | 128 | 143 | 179 | 215 | ||
52 | 37 | 19 | 34 | 16 | 1 | 2 | 3 | 3 | 3 | 2 | 2 | 161 | 200 | 182 | 197 | 125 | 110 | ||
52 | 16 | 34 | 19 | 37 | 1 | 4 | 4 | 1 | 1 | 4 | 1 | 269 | 233 | 89 | 74 | 254 | 56 | ||
1 | 37 | 34 | 19 | 16 | 52 | 5 | 0 | 5 | 0 | 0 | 5 | 272 | 38 | 305 | 20 | 17 | 323 | ||
2 | 15 | 33 | 20 | 38 | 51 | 0 | 5 | 0 | 5 | 5 | 0 | 3 | 286 | 34 | 291 | 309 | 52 | ||
51 | 15 | 20 | 33 | 38 | 2 | 1 | 1 | 4 | 4 | 1 | 4 | 106 | 70 | 237 | 250 | 93 | 219 | ||
2 | 38 | 20 | 33 | 15 | 51 | 3 | 2 | 2 | 2 | 3 | 3 | 165 | 147 | 129 | 142 | 178 | 214 | ||
51 | 38 | 20 | 33 | 15 | 2 | 2 | 3 | 3 | 3 | 2 | 2 | 160 | 201 | 183 | 196 | 124 | 111 | ||
51 | 15 | 33 | 20 | 38 | 2 | 4 | 4 | 1 | 1 | 4 | 1 | 268 | 232 | 88 | 75 | 255 | 57 | ||
2 | 38 | 33 | 20 | 15 | 51 | 5 | 0 | 5 | 0 | 0 | 5 | 273 | 39 | 304 | 21 | 16 | 322 | ||
3 | 14 | 32 | 21 | 39 | 50 | 0 | 5 | 0 | 5 | 5 | 0 | 4 | 285 | 33 | 292 | 310 | 51 | ||
50 | 14 | 21 | 32 | 39 | 3 | 1 | 1 | 4 | 4 | 1 | 4 | 105 | 69 | 238 | 249 | 94 | 220 | ||
3 | 39 | 21 | 32 | 14 | 50 | 3 | 2 | 2 | 2 | 3 | 3 | 166 | 148 | 130 | 141 | 177 | 213 | ||
50 | 39 | 21 | 32 | 14 | 3 | 2 | 3 | 3 | 3 | 2 | 2 | 159 | 202 | 184 | 195 | 123 | 112 | ||
50 | 14 | 32 | 21 | 39 | 3 | 4 | 4 | 1 | 1 | 4 | 1 | 267 | 231 | 87 | 76 | 256 | 58 | ||
3 | 39 | 32 | 21 | 14 | 50 | 5 | 0 | 5 | 0 | 0 | 5 | 274 | 40 | 303 | 22 | 15 | 321 | ||
4 | 13 | 31 | 22 | 40 | 49 | 0 | 5 | 0 | 5 | 5 | 0 | 5 | 284 | 32 | 293 | 311 | 50 | ||
49 | 13 | 22 | 31 | 40 | 4 | 1 | 1 | 4 | 4 | 1 | 4 | 104 | 68 | 239 | 248 | 95 | 221 | ||
4 | 40 | 22 | 31 | 13 | 49 | 3 | 2 | 2 | 2 | 3 | 3 | 167 | 149 | 131 | 140 | 176 | 212 | ||
49 | 40 | 22 | 31 | 13 | 4 | 2 | 3 | 3 | 3 | 2 | 2 | 158 | 203 | 185 | 194 | 122 | 113 | ||
49 | 13 | 31 | 22 | 40 | 4 | 4 | 4 | 1 | 1 | 4 | 1 | 266 | 230 | 86 | 77 | 257 | 59 | ||
4 | 40 | 31 | 22 | 13 | 49 | 5 | 0 | 5 | 0 | 0 | 5 | 275 | 41 | 302 | 23 | 14 | 320 | ||
5 | 12 | 30 | 23 | 41 | 48 | 0 | 5 | 0 | 5 | 5 | 0 | 6 | 283 | 31 | 294 | 312 | 49 | ||
48 | 12 | 23 | 30 | 41 | 5 | 1 | 1 | 4 | 4 | 1 | 4 | 103 | 67 | 240 | 247 | 96 | 222 | ||
5 | 41 | 23 | 30 | 12 | 48 | 3 | 2 | 2 | 2 | 3 | 3 | 168 | 150 | 132 | 139 | 175 | 211 | ||
48 | 41 | 23 | 30 | 12 | 5 | 2 | 3 | 3 | 3 | 2 | 2 | 157 | 204 | 186 | 193 | 121 | 114 | ||
48 | 12 | 30 | 23 | 41 | 5 | 4 | 4 | 1 | 1 | 4 | 1 | 265 | 229 | 85 | 78 | 258 | 60 | ||
5 | 41 | 30 | 23 | 12 | 48 | 5 | 0 | 5 | 0 | 0 | 5 | 276 | 42 | 301 | 24 | 13 | 319 | ||
6 | 11 | 29 | 24 | 42 | 47 | 0 | 5 | 0 | 5 | 5 | 0 | 7 | 282 | 30 | 295 | 313 | 48 | ||
47 | 11 | 24 | 29 | 42 | 6 | 1 | 1 | 4 | 4 | 1 | 4 | 102 | 66 | 241 | 246 | 97 | 223 | ||
6 | 42 | 24 | 29 | 11 | 47 | 3 | 2 | 2 | 2 | 3 | 3 | 169 | 151 | 133 | 138 | 174 | 210 | ||
47 | 42 | 24 | 29 | 11 | 6 | 2 | 3 | 3 | 3 | 2 | 2 | 156 | 205 | 187 | 192 | 120 | 115 | ||
47 | 11 | 29 | 24 | 42 | 6 | 4 | 4 | 1 | 1 | 4 | 1 | 264 | 228 | 84 | 79 | 259 | 61 | ||
6 | 42 | 29 | 24 | 11 | 47 | 5 | 0 | 5 | 0 | 0 | 5 | 277 | 43 | 300 | 25 | 12 | 318 | ||
7 | 10 | 28 | 25 | 43 | 46 | 0 | 5 | 0 | 5 | 5 | 0 | 8 | 281 | 29 | 296 | 314 | 47 | ||
46 | 10 | 25 | 28 | 43 | 7 | 1 | 1 | 4 | 4 | 1 | 4 | 101 | 65 | 242 | 245 | 98 | 224 | ||
7 | 43 | 25 | 28 | 10 | 46 | 3 | 2 | 2 | 2 | 3 | 3 | 170 | 152 | 134 | 137 | 173 | 209 | ||
46 | 43 | 25 | 28 | 10 | 7 | 2 | 3 | 3 | 3 | 2 | 2 | 155 | 206 | 188 | 191 | 119 | 116 | ||
46 | 10 | 28 | 25 | 43 | 7 | 4 | 4 | 1 | 1 | 4 | 1 | 263 | 227 | 83 | 80 | 260 | 62 | ||
7 | 43 | 28 | 25 | 10 | 46 | 5 | 0 | 5 | 0 | 0 | 5 | 278 | 44 | 299 | 26 | 11 | 317 | ||
8 | 9 | 27 | 26 | 44 | 45 | 0 | 5 | 0 | 5 | 5 | 0 | 9 | 280 | 28 | 297 | 315 | 46 | ||
45 | 9 | 26 | 27 | 44 | 8 | 1 | 1 | 4 | 4 | 1 | 4 | 100 | 64 | 243 | 244 | 99 | 225 | ||
8 | 44 | 26 | 27 | 9 | 45 | 3 | 2 | 2 | 2 | 3 | 3 | 171 | 153 | 135 | 136 | 172 | 208 | ||
45 | 44 | 26 | 27 | 9 | 8 | 2 | 3 | 3 | 3 | 2 | 2 | 154 | 207 | 189 | 190 | 118 | 117 | ||
45 | 9 | 27 | 26 | 44 | 8 | 4 | 4 | 1 | 1 | 4 | 1 | 262 | 226 | 82 | 81 | 261 | 63 | ||
8 | 44 | 27 | 26 | 9 | 45 | 5 | 0 | 5 | 0 | 0 | 5 | 279 | 45 | 298 | 27 | 10 | 316 |
Voeg de 9 magische 6x6 vierkanten op volgorde samen.
18x18 magisch vierkant
1 | 288 | 36 | 289 | 307 | 54 | 2 | 287 | 35 | 290 | 308 | 53 | 3 | 286 | 34 | 291 | 309 | 52 |
108 | 72 | 235 | 252 | 91 | 217 | 107 | 71 | 236 | 251 | 92 | 218 | 106 | 70 | 237 | 250 | 93 | 219 |
163 | 145 | 127 | 144 | 180 | 216 | 164 | 146 | 128 | 143 | 179 | 215 | 165 | 147 | 129 | 142 | 178 | 214 |
162 | 199 | 181 | 198 | 126 | 109 | 161 | 200 | 182 | 197 | 125 | 110 | 160 | 201 | 183 | 196 | 124 | 111 |
270 | 234 | 90 | 73 | 253 | 55 | 269 | 233 | 89 | 74 | 254 | 56 | 268 | 232 | 88 | 75 | 255 | 57 |
271 | 37 | 306 | 19 | 18 | 324 | 272 | 38 | 305 | 20 | 17 | 323 | 273 | 39 | 304 | 21 | 16 | 322 |
4 | 285 | 33 | 292 | 310 | 51 | 5 | 284 | 32 | 293 | 311 | 50 | 6 | 283 | 31 | 294 | 312 | 49 |
105 | 69 | 238 | 249 | 94 | 220 | 104 | 68 | 239 | 248 | 95 | 221 | 103 | 67 | 240 | 247 | 96 | 222 |
166 | 148 | 130 | 141 | 177 | 213 | 167 | 149 | 131 | 140 | 176 | 212 | 168 | 150 | 132 | 139 | 175 | 211 |
159 | 202 | 184 | 195 | 123 | 112 | 158 | 203 | 185 | 194 | 122 | 113 | 157 | 204 | 186 | 193 | 121 | 114 |
267 | 231 | 87 | 76 | 256 | 58 | 266 | 230 | 86 | 77 | 257 | 59 | 265 | 229 | 85 | 78 | 258 | 60 |
274 | 40 | 303 | 22 | 15 | 321 | 275 | 41 | 302 | 23 | 14 | 320 | 276 | 42 | 301 | 24 | 13 | 319 |
7 | 282 | 30 | 295 | 313 | 48 | 8 | 281 | 29 | 296 | 314 | 47 | 9 | 280 | 28 | 297 | 315 | 46 |
102 | 66 | 241 | 246 | 97 | 223 | 101 | 65 | 242 | 245 | 98 | 224 | 100 | 64 | 243 | 244 | 99 | 225 |
169 | 151 | 133 | 138 | 174 | 210 | 170 | 152 | 134 | 137 | 173 | 209 | 171 | 153 | 135 | 136 | 172 | 208 |
156 | 205 | 187 | 192 | 120 | 115 | 155 | 206 | 188 | 191 | 119 | 116 | 154 | 207 | 189 | 190 | 118 | 117 |
264 | 228 | 84 | 79 | 259 | 61 | 263 | 227 | 83 | 80 | 260 | 62 | 262 | 226 | 82 | 81 | 261 | 63 |
277 | 43 | 300 | 25 | 12 | 318 | 278 | 44 | 299 | 26 | 11 | 317 | 279 | 45 | 298 | 27 | 10 | 316 |
Het 18x18 magisch vierkant is kloppend voor 1/3 rij/kolom/diagonaal en 6x6 compact. Zie ook hoe de getallen in strakke volgorde in het 18x18 magische vierkant zijn gerang-schikt als je door de 6x6 deelvierkanten en weer terug kijkt (toch een regelmatige struc-tuur in een dubbel oneven magisch vierkant gevonden, hoewel dat niet mogelijk zou zijn).
Zie methode samengesteld, proportioneel (1) op deze website uitgewerkt voor
8x8, 9x9, 12x12a, 12x12b, 15x15a, 15x15b, 16x16a, 16x16b, 18x18, 20x20a, 20x20b, 21x21a, 21x21b, 24x24a, 24x24b, 24x24c, 27x27a, 27x27b, 28x28a, 28x28b, 30x30a, 30x30b, 32x32a, 32x32b, 32x32c