De Lozenge methode van John Horton Conway levert een oneven magisch vierkant op, waarbij alle oneven getallen zich in de (witte) 'diamant' bevinden en alle even getallen daarbuiten (in het donkere gebied). Zie voor gedetailleerde uitleg het Lozenge 5x5 magisch vierkant.
Neem 1x getal uit rijpatroon +1
9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 0 | 1 | 2 | 3 | 4 | 5 |
5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 0 | 1 | 2 | 3 | 4 |
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 0 | 1 | 2 | 3 |
3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 0 | 1 | 2 |
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 0 | 1 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 0 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
18 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
17 | 18 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
16 | 17 | 18 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
15 | 16 | 17 | 18 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
14 | 15 | 16 | 17 | 18 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
13 | 14 | 15 | 16 | 17 | 18 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
12 | 13 | 14 | 15 | 16 | 17 | 18 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
+ 19x getal uit kolompatroon
10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
12 | 13 | 14 | 15 | 16 | 17 | 18 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
13 | 14 | 15 | 16 | 17 | 18 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
14 | 15 | 16 | 17 | 18 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
15 | 16 | 17 | 18 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
16 | 17 | 18 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
17 | 18 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
18 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 0 |
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 0 | 1 |
3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 0 | 1 | 2 |
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 0 | 1 | 2 | 3 |
5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 0 | 1 | 2 | 3 | 4 |
6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 0 | 1 | 2 | 3 | 4 | 5 |
7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
= 19x19 Lozenge magisch vierkant
200 | 220 | 240 | 260 | 280 | 300 | 320 | 340 | 360 | 19 | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 | 180 |
218 | 238 | 258 | 278 | 298 | 318 | 338 | 358 | 17 | 37 | 57 | 58 | 78 | 98 | 118 | 138 | 158 | 178 | 198 |
236 | 256 | 276 | 296 | 316 | 336 | 356 | 15 | 35 | 55 | 75 | 95 | 96 | 116 | 136 | 156 | 176 | 196 | 216 |
254 | 274 | 294 | 314 | 334 | 354 | 13 | 33 | 53 | 73 | 93 | 113 | 133 | 134 | 154 | 174 | 194 | 214 | 234 |
272 | 292 | 312 | 332 | 352 | 11 | 31 | 51 | 71 | 91 | 111 | 131 | 151 | 171 | 172 | 192 | 212 | 232 | 252 |
290 | 310 | 330 | 350 | 9 | 29 | 49 | 69 | 89 | 109 | 129 | 149 | 169 | 189 | 209 | 210 | 230 | 250 | 270 |
308 | 328 | 348 | 7 | 27 | 47 | 67 | 87 | 107 | 127 | 147 | 167 | 187 | 207 | 227 | 247 | 248 | 268 | 288 |
326 | 346 | 5 | 25 | 45 | 65 | 85 | 105 | 125 | 145 | 165 | 185 | 205 | 225 | 245 | 265 | 285 | 286 | 306 |
344 | 3 | 23 | 43 | 63 | 83 | 103 | 123 | 143 | 163 | 183 | 203 | 223 | 243 | 263 | 283 | 303 | 323 | 324 |
1 | 21 | 41 | 61 | 81 | 101 | 121 | 141 | 161 | 181 | 201 | 221 | 241 | 261 | 281 | 301 | 321 | 341 | 361 |
38 | 39 | 59 | 79 | 99 | 119 | 139 | 159 | 179 | 199 | 219 | 239 | 259 | 279 | 299 | 319 | 339 | 359 | 18 |
56 | 76 | 77 | 97 | 117 | 137 | 157 | 177 | 197 | 217 | 237 | 257 | 277 | 297 | 317 | 337 | 357 | 16 | 36 |
74 | 94 | 114 | 115 | 135 | 155 | 175 | 195 | 215 | 235 | 255 | 275 | 295 | 315 | 335 | 355 | 14 | 34 | 54 |
92 | 112 | 132 | 152 | 153 | 173 | 193 | 213 | 233 | 253 | 273 | 293 | 313 | 333 | 353 | 12 | 32 | 52 | 72 |
110 | 130 | 150 | 170 | 190 | 191 | 211 | 231 | 251 | 271 | 291 | 311 | 331 | 351 | 10 | 30 | 50 | 70 | 90 |
128 | 148 | 168 | 188 | 208 | 228 | 229 | 249 | 269 | 289 | 309 | 329 | 349 | 8 | 28 | 48 | 68 | 88 | 108 |
146 | 166 | 186 | 206 | 226 | 246 | 266 | 267 | 287 | 307 | 327 | 347 | 6 | 26 | 46 | 66 | 86 | 106 | 126 |
164 | 184 | 204 | 224 | 244 | 264 | 284 | 304 | 305 | 325 | 345 | 4 | 24 | 44 | 64 | 84 | 104 | 124 | 144 |
182 | 202 | 222 | 242 | 262 | 282 | 302 | 322 | 342 | 343 | 2 | 22 | 42 | 62 | 82 | 102 | 122 | 142 | 162 |
Deze methode werkt voor elke grootte (orde) is oneven vanaf 3x3 tot oneindig. Zie uitgewerkt voor 3x3, 5x5, 7x7, 9x9, 11x11, 13x13, 15x15, 17x17, 19x19, 21x21, 23x23, 25x25, 27x27, 29x29, 31x31