Kun je voor het panmagisch 21x21 vierkant dezelfde oplossingsmethode als voor het 5x5 panmagisch vierkant gebruiken? Het antwoord is ja en nee. Kies je als eerste rij voor de getallen 0-1-2-3-4-5-6-7- 8-9-10-11-12-13-14-15-16-17-18-19-20, dan is de uitkomst een semi-magisch 21x21 vierkant. Kies je als eerste rij voor 0-2-1-4-3-5-8-7-6-9-10-11-13-12-14-17-16-15-19-20-18, dan is de uitkomst wel een panmagisch 21x21 vierkant. Dit komt omdat [geel gemarkeerd] 0+4+8+9+13+17+19 = [blauw gemarkeerd] 2+3+7+10+12+16+20 = [roze gemarkeerd] 1+5+6+11+14+15+18 = 70, ofwel 1/3 van (0+1+2+3+4+5+6+7+8 +9+10+11+12+13+14+ 15+16+17+18+19+20=) 210.
Neem 1x getal uit 1e patroon (shift 2 naar links) +1
0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 |
1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 |
3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 |
8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 |
6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 |
10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 |
13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 |
14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 |
16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 |
19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 |
18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 |
2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 |
4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 |
5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 |
7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 |
9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 |
11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 |
12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 |
17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 |
15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 |
20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 |
+ 21x getal uit 2e patroon (shift 2 naar rechts)
0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 |
20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 |
15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 |
17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 |
12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 |
11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 |
9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 |
7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 |
5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 |
4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 |
2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 |
18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 |
19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 |
16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 |
14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 |
13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 |
10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 |
6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 |
8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 |
3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 |
1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 |
= panmagisch 21x21 vierkant
1 | 45 | 23 | 89 | 67 | 111 | 177 | 155 | 133 | 199 | 221 | 243 | 287 | 265 | 309 | 375 | 353 | 331 | 419 | 441 | 397 |
42 | 103 | 64 | 108 | 170 | 152 | 130 | 195 | 219 | 239 | 280 | 262 | 305 | 369 | 350 | 328 | 414 | 438 | 395 | 16 | 62 |
79 | 125 | 189 | 166 | 127 | 192 | 212 | 236 | 277 | 258 | 303 | 365 | 343 | 325 | 410 | 432 | 392 | 13 | 57 | 39 | 101 |
186 | 164 | 142 | 209 | 231 | 250 | 274 | 255 | 296 | 362 | 340 | 321 | 408 | 428 | 385 | 10 | 53 | 33 | 98 | 76 | 120 |
139 | 204 | 228 | 248 | 289 | 272 | 315 | 376 | 337 | 318 | 401 | 425 | 382 | 6 | 51 | 29 | 91 | 73 | 116 | 180 | 161 |
222 | 245 | 286 | 267 | 312 | 374 | 352 | 335 | 420 | 439 | 379 | 3 | 44 | 26 | 88 | 69 | 114 | 176 | 154 | 136 | 200 |
283 | 263 | 306 | 371 | 349 | 330 | 417 | 437 | 394 | 20 | 63 | 40 | 85 | 66 | 107 | 173 | 151 | 132 | 198 | 218 | 238 |
302 | 364 | 346 | 326 | 411 | 434 | 391 | 15 | 60 | 38 | 100 | 83 | 126 | 187 | 148 | 129 | 191 | 215 | 235 | 279 | 261 |
342 | 324 | 407 | 427 | 388 | 11 | 54 | 35 | 97 | 78 | 123 | 185 | 163 | 146 | 210 | 229 | 232 | 276 | 254 | 299 | 361 |
404 | 424 | 384 | 9 | 50 | 28 | 94 | 74 | 117 | 182 | 160 | 141 | 207 | 227 | 247 | 293 | 273 | 313 | 358 | 339 | 317 |
381 | 2 | 47 | 25 | 90 | 72 | 113 | 175 | 157 | 137 | 201 | 224 | 244 | 288 | 270 | 311 | 373 | 356 | 336 | 418 | 421 |
61 | 22 | 87 | 65 | 110 | 172 | 153 | 135 | 197 | 217 | 241 | 284 | 264 | 308 | 370 | 351 | 333 | 416 | 436 | 398 | 21 |
104 | 84 | 124 | 169 | 150 | 128 | 194 | 214 | 237 | 282 | 260 | 301 | 367 | 347 | 327 | 413 | 433 | 393 | 18 | 59 | 37 |
122 | 184 | 167 | 147 | 208 | 211 | 234 | 275 | 257 | 298 | 363 | 345 | 323 | 406 | 430 | 389 | 12 | 56 | 34 | 99 | 81 |
162 | 144 | 206 | 226 | 251 | 294 | 271 | 295 | 360 | 338 | 320 | 403 | 426 | 387 | 8 | 49 | 31 | 95 | 75 | 119 | 181 |
203 | 223 | 246 | 291 | 269 | 310 | 377 | 357 | 334 | 400 | 423 | 380 | 5 | 46 | 27 | 93 | 71 | 112 | 178 | 158 | 138 |
242 | 285 | 266 | 307 | 372 | 354 | 332 | 415 | 440 | 399 | 19 | 43 | 24 | 86 | 68 | 109 | 174 | 156 | 134 | 196 | 220 |
259 | 304 | 368 | 348 | 329 | 412 | 435 | 396 | 17 | 58 | 41 | 105 | 82 | 106 | 171 | 149 | 131 | 193 | 216 | 240 | 281 |
366 | 344 | 322 | 409 | 431 | 390 | 14 | 55 | 36 | 102 | 80 | 121 | 188 | 168 | 145 | 190 | 213 | 233 | 278 | 256 | 300 |
319 | 405 | 429 | 386 | 7 | 52 | 32 | 96 | 77 | 118 | 183 | 165 | 143 | 205 | 230 | 252 | 292 | 253 | 297 | 359 | 341 |
422 | 383 | 4 | 48 | 30 | 92 | 70 | 115 | 179 | 159 | 140 | 202 | 225 | 249 | 290 | 268 | 314 | 378 | 355 | 316 | 402 |
De shiftmethode werk voor oneven grootte vanaf 5x5 tot oneindig. Zie uitgewerkt voor 5x5, 7x7, 9x9 (1), 9x9 (2), 11x11, 13x13, 15x15 (1), 15x15 (2), 17x17, 19x19, 21x21 (1), 21x21 (2), 23x23, 25x25, 27x27 (1), 27x27 (2), 29x29 en 31x31
N.B.: Bij grootte is (oneven) veelvoud van 3 leidt de eenvoudige shiftmethode meestal tot een semimagisch resultaat (dus niet kloppend voor de diagonalen). Maar als bepaalde randvoorwaarden in acht worden genomen, kan ook voor grootte is (oneven) veelvoud van 3 de shiftmethode worden gebruikt.