De Lozenge methode van John Horton Conway levert een oneven magisch vierkant op, waarbij alle oneven getallen zich in de (witte) 'diamant' bevinden en alle even getallen daarbuiten (in het donkere gebied). Zie voor gedetailleerde uitleg het Lozenge 5x5 magisch vierkant.
Neem 1x getal uit rijpatroon +1
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 0 | 1 | 2 | 3 | 4 | 5 |
5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 0 | 1 | 2 | 3 | 4 |
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 0 | 1 | 2 | 3 |
3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 0 | 1 | 2 |
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 0 | 1 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 0 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
22 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
21 | 22 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
20 | 21 | 22 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
19 | 20 | 21 | 22 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
18 | 19 | 20 | 21 | 22 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
17 | 18 | 19 | 20 | 21 | 22 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
16 | 17 | 18 | 19 | 20 | 21 | 22 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
+ 23 getal uit kolompatroon
12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
16 | 17 | 18 | 19 | 20 | 21 | 22 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
17 | 18 | 19 | 20 | 21 | 22 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
18 | 19 | 20 | 21 | 22 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
19 | 20 | 21 | 22 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
20 | 21 | 22 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
21 | 22 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
22 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 0 |
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 0 | 1 |
3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 0 | 1 | 2 |
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 0 | 1 | 2 | 3 |
5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 0 | 1 | 2 | 3 | 4 |
6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 0 | 1 | 2 | 3 | 4 | 5 |
7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
= 23x23 Lozenge magisch vierkant
288 | 312 | 336 | 360 | 384 | 408 | 432 | 456 | 480 | 504 | 528 | 23 | 24 | 48 | 72 | 96 | 120 | 144 | 168 | 192 | 216 | 240 | 264 |
310 | 334 | 358 | 382 | 406 | 430 | 454 | 478 | 502 | 526 | 21 | 45 | 69 | 70 | 94 | 118 | 142 | 166 | 190 | 214 | 238 | 262 | 286 |
332 | 356 | 380 | 404 | 428 | 452 | 476 | 500 | 524 | 19 | 43 | 67 | 91 | 115 | 116 | 140 | 164 | 188 | 212 | 236 | 260 | 284 | 308 |
354 | 378 | 402 | 426 | 450 | 474 | 498 | 522 | 17 | 41 | 65 | 89 | 113 | 137 | 161 | 162 | 186 | 210 | 234 | 258 | 282 | 306 | 330 |
376 | 400 | 424 | 448 | 472 | 496 | 520 | 15 | 39 | 63 | 87 | 111 | 135 | 159 | 183 | 207 | 208 | 232 | 256 | 280 | 304 | 328 | 352 |
398 | 422 | 446 | 470 | 494 | 518 | 13 | 37 | 61 | 85 | 109 | 133 | 157 | 181 | 205 | 229 | 253 | 254 | 278 | 302 | 326 | 350 | 374 |
420 | 444 | 468 | 492 | 516 | 11 | 35 | 59 | 83 | 107 | 131 | 155 | 179 | 203 | 227 | 251 | 275 | 299 | 300 | 324 | 348 | 372 | 396 |
442 | 466 | 490 | 514 | 9 | 33 | 57 | 81 | 105 | 129 | 153 | 177 | 201 | 225 | 249 | 273 | 297 | 321 | 345 | 346 | 370 | 394 | 418 |
464 | 488 | 512 | 7 | 31 | 55 | 79 | 103 | 127 | 151 | 175 | 199 | 223 | 247 | 271 | 295 | 319 | 343 | 367 | 391 | 392 | 416 | 440 |
486 | 510 | 5 | 29 | 53 | 77 | 101 | 125 | 149 | 173 | 197 | 221 | 245 | 269 | 293 | 317 | 341 | 365 | 389 | 413 | 437 | 438 | 462 |
508 | 3 | 27 | 51 | 75 | 99 | 123 | 147 | 171 | 195 | 219 | 243 | 267 | 291 | 315 | 339 | 363 | 387 | 411 | 435 | 459 | 483 | 484 |
1 | 25 | 49 | 73 | 97 | 121 | 145 | 169 | 193 | 217 | 241 | 265 | 289 | 313 | 337 | 361 | 385 | 409 | 433 | 457 | 481 | 505 | 529 |
46 | 47 | 71 | 95 | 119 | 143 | 167 | 191 | 215 | 239 | 263 | 287 | 311 | 335 | 359 | 383 | 407 | 431 | 455 | 479 | 503 | 527 | 22 |
68 | 92 | 93 | 117 | 141 | 165 | 189 | 213 | 237 | 261 | 285 | 309 | 333 | 357 | 381 | 405 | 429 | 453 | 477 | 501 | 525 | 20 | 44 |
90 | 114 | 138 | 139 | 163 | 187 | 211 | 235 | 259 | 283 | 307 | 331 | 355 | 379 | 403 | 427 | 451 | 475 | 499 | 523 | 18 | 42 | 66 |
112 | 136 | 160 | 184 | 185 | 209 | 233 | 257 | 281 | 305 | 329 | 353 | 377 | 401 | 425 | 449 | 473 | 497 | 521 | 16 | 40 | 64 | 88 |
134 | 158 | 182 | 206 | 230 | 231 | 255 | 279 | 303 | 327 | 351 | 375 | 399 | 423 | 447 | 471 | 495 | 519 | 14 | 38 | 62 | 86 | 110 |
156 | 180 | 204 | 228 | 252 | 276 | 277 | 301 | 325 | 349 | 373 | 397 | 421 | 445 | 469 | 493 | 517 | 12 | 36 | 60 | 84 | 108 | 132 |
178 | 202 | 226 | 250 | 274 | 298 | 322 | 323 | 347 | 371 | 395 | 419 | 443 | 467 | 491 | 515 | 10 | 34 | 58 | 82 | 106 | 130 | 154 |
200 | 224 | 248 | 272 | 296 | 320 | 344 | 368 | 369 | 393 | 417 | 441 | 465 | 489 | 513 | 8 | 32 | 56 | 80 | 104 | 128 | 152 | 176 |
222 | 246 | 270 | 294 | 318 | 342 | 366 | 390 | 414 | 415 | 439 | 463 | 487 | 511 | 6 | 30 | 54 | 78 | 102 | 126 | 150 | 174 | 198 |
244 | 268 | 292 | 316 | 340 | 364 | 388 | 412 | 436 | 460 | 461 | 485 | 509 | 4 | 28 | 52 | 76 | 100 | 124 | 148 | 172 | 196 | 220 |
266 | 290 | 314 | 338 | 362 | 386 | 410 | 434 | 458 | 482 | 506 | 507 | 2 | 26 | 50 | 74 | 98 | 122 | 146 | 170 | 194 | 218 | 242 |
Deze methode werkt voor elke grootte (orde) is oneven vanaf 3x3 tot oneindig. Zie uitgewerkt voor 3x3, 5x5, 7x7, 9x9, 11x11, 13x13, 15x15, 17x17, 19x19, 21x21, 23x23, 25x25, 27x27, 29x29, 31x31