Deze methode werkt voor alle oneven vierkanten, die geen veelvoud van 3 zijn (dus 5x5, 7x7, 11x11, 13x13, 17x17, ...). Bijvoorbeeld voor het 29x29 vierkant, gebruik dan in de eerste rij de getallen 0-a-b-c-d-e-f-g-h-i-j-k-l-m-n-o-p-q-r-s-t-u-v-x-y-z-aa-ab (waarbij je voor a t/m ab achtentwintig verschillende getallen uit 1 t/m 28 kunt nemen; dat is 28x27x26x25x24x23x22x21x20x19x18x17x16x15x14x13x12x11x10x9x8x7x6x5x4x3x2 = 3,04888 * 10^29 verschillende getallencombinaties!!!)
Schuif in het eerste patroon de eerste regel in rij 2 t/m 29 telkens twee plaatsen naar links en schuif in het tweede patroon de eerste regel in rij 2 t/m 29 telkens twee plaatsen naar rechts.
Neem 1x getal uit 1e patroon +1
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 |
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 |
6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 |
8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 |
3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 |
5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 |
7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
+ 29x getal uit 2e patroon
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |
27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 |
3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 |
28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |
26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 | 4 | 5 |
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 | 2 | 3 |
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 0 | 1 |
= panmagisch 29x29 vierkant
1 | 31 | 61 | 91 | 121 | 151 | 181 | 211 | 241 | 271 | 301 | 331 | 361 | 391 | 421 | 451 | 481 | 511 | 541 | 571 | 601 | 631 | 661 | 691 | 721 | 751 | 781 | 811 | 841 |
786 | 816 | 5 | 35 | 65 | 95 | 125 | 155 | 185 | 215 | 245 | 275 | 305 | 335 | 365 | 395 | 425 | 455 | 485 | 515 | 545 | 575 | 605 | 635 | 665 | 695 | 725 | 726 | 756 |
730 | 760 | 790 | 820 | 9 | 39 | 69 | 99 | 129 | 159 | 189 | 219 | 249 | 279 | 309 | 339 | 369 | 399 | 429 | 459 | 489 | 519 | 549 | 579 | 609 | 610 | 640 | 670 | 700 |
674 | 704 | 734 | 764 | 794 | 824 | 13 | 43 | 73 | 103 | 133 | 163 | 193 | 223 | 253 | 283 | 313 | 343 | 373 | 403 | 433 | 463 | 493 | 494 | 524 | 554 | 584 | 614 | 644 |
618 | 648 | 678 | 708 | 738 | 768 | 798 | 828 | 17 | 47 | 77 | 107 | 137 | 167 | 197 | 227 | 257 | 287 | 317 | 347 | 377 | 378 | 408 | 438 | 468 | 498 | 528 | 558 | 588 |
562 | 592 | 622 | 652 | 682 | 712 | 742 | 772 | 802 | 832 | 21 | 51 | 81 | 111 | 141 | 171 | 201 | 231 | 261 | 262 | 292 | 322 | 352 | 382 | 412 | 442 | 472 | 502 | 532 |
506 | 536 | 566 | 596 | 626 | 656 | 686 | 716 | 746 | 776 | 806 | 836 | 25 | 55 | 85 | 115 | 145 | 146 | 176 | 206 | 236 | 266 | 296 | 326 | 356 | 386 | 416 | 446 | 476 |
450 | 480 | 510 | 540 | 570 | 600 | 630 | 660 | 690 | 720 | 750 | 780 | 810 | 840 | 29 | 30 | 60 | 90 | 120 | 150 | 180 | 210 | 240 | 270 | 300 | 330 | 360 | 390 | 420 |
394 | 424 | 454 | 484 | 514 | 544 | 574 | 604 | 634 | 664 | 694 | 724 | 754 | 755 | 785 | 815 | 4 | 34 | 64 | 94 | 124 | 154 | 184 | 214 | 244 | 274 | 304 | 334 | 364 |
338 | 368 | 398 | 428 | 458 | 488 | 518 | 548 | 578 | 608 | 638 | 639 | 669 | 699 | 729 | 759 | 789 | 819 | 8 | 38 | 68 | 98 | 128 | 158 | 188 | 218 | 248 | 278 | 308 |
282 | 312 | 342 | 372 | 402 | 432 | 462 | 492 | 522 | 523 | 553 | 583 | 613 | 643 | 673 | 703 | 733 | 763 | 793 | 823 | 12 | 42 | 72 | 102 | 132 | 162 | 192 | 222 | 252 |
226 | 256 | 286 | 316 | 346 | 376 | 406 | 407 | 437 | 467 | 497 | 527 | 557 | 587 | 617 | 647 | 677 | 707 | 737 | 767 | 797 | 827 | 16 | 46 | 76 | 106 | 136 | 166 | 196 |
170 | 200 | 230 | 260 | 290 | 291 | 321 | 351 | 381 | 411 | 441 | 471 | 501 | 531 | 561 | 591 | 621 | 651 | 681 | 711 | 741 | 771 | 801 | 831 | 20 | 50 | 80 | 110 | 140 |
114 | 144 | 174 | 175 | 205 | 235 | 265 | 295 | 325 | 355 | 385 | 415 | 445 | 475 | 505 | 535 | 565 | 595 | 625 | 655 | 685 | 715 | 745 | 775 | 805 | 835 | 24 | 54 | 84 |
58 | 59 | 89 | 119 | 149 | 179 | 209 | 239 | 269 | 299 | 329 | 359 | 389 | 419 | 449 | 479 | 509 | 539 | 569 | 599 | 629 | 659 | 689 | 719 | 749 | 779 | 809 | 839 | 28 |
814 | 3 | 33 | 63 | 93 | 123 | 153 | 183 | 213 | 243 | 273 | 303 | 333 | 363 | 393 | 423 | 453 | 483 | 513 | 543 | 573 | 603 | 633 | 663 | 693 | 723 | 753 | 783 | 784 |
758 | 788 | 818 | 7 | 37 | 67 | 97 | 127 | 157 | 187 | 217 | 247 | 277 | 307 | 337 | 367 | 397 | 427 | 457 | 487 | 517 | 547 | 577 | 607 | 637 | 667 | 668 | 698 | 728 |
702 | 732 | 762 | 792 | 822 | 11 | 41 | 71 | 101 | 131 | 161 | 191 | 221 | 251 | 281 | 311 | 341 | 371 | 401 | 431 | 461 | 491 | 521 | 551 | 552 | 582 | 612 | 642 | 672 |
646 | 676 | 706 | 736 | 766 | 796 | 826 | 15 | 45 | 75 | 105 | 135 | 165 | 195 | 225 | 255 | 285 | 315 | 345 | 375 | 405 | 435 | 436 | 466 | 496 | 526 | 556 | 586 | 616 |
590 | 620 | 650 | 680 | 710 | 740 | 770 | 800 | 830 | 19 | 49 | 79 | 109 | 139 | 169 | 199 | 229 | 259 | 289 | 319 | 320 | 350 | 380 | 410 | 440 | 470 | 500 | 530 | 560 |
534 | 564 | 594 | 624 | 654 | 684 | 714 | 744 | 774 | 804 | 834 | 23 | 53 | 83 | 113 | 143 | 173 | 203 | 204 | 234 | 264 | 294 | 324 | 354 | 384 | 414 | 444 | 474 | 504 |
478 | 508 | 538 | 568 | 598 | 628 | 658 | 688 | 718 | 748 | 778 | 808 | 838 | 27 | 57 | 87 | 88 | 118 | 148 | 178 | 208 | 238 | 268 | 298 | 328 | 358 | 388 | 418 | 448 |
422 | 452 | 482 | 512 | 542 | 572 | 602 | 632 | 662 | 692 | 722 | 752 | 782 | 812 | 813 | 2 | 32 | 62 | 92 | 122 | 152 | 182 | 212 | 242 | 272 | 302 | 332 | 362 | 392 |
366 | 396 | 426 | 456 | 486 | 516 | 546 | 576 | 606 | 636 | 666 | 696 | 697 | 727 | 757 | 787 | 817 | 6 | 36 | 66 | 96 | 126 | 156 | 186 | 216 | 246 | 276 | 306 | 336 |
310 | 340 | 370 | 400 | 430 | 460 | 490 | 520 | 550 | 580 | 581 | 611 | 641 | 671 | 701 | 731 | 761 | 791 | 821 | 10 | 40 | 70 | 100 | 130 | 160 | 190 | 220 | 250 | 280 |
254 | 284 | 314 | 344 | 374 | 404 | 434 | 464 | 465 | 495 | 525 | 555 | 585 | 615 | 645 | 675 | 705 | 735 | 765 | 795 | 825 | 14 | 44 | 74 | 104 | 134 | 164 | 194 | 224 |
198 | 228 | 258 | 288 | 318 | 348 | 349 | 379 | 409 | 439 | 469 | 499 | 529 | 559 | 589 | 619 | 649 | 679 | 709 | 739 | 769 | 799 | 829 | 18 | 48 | 78 | 108 | 138 | 168 |
142 | 172 | 202 | 232 | 233 | 263 | 293 | 323 | 353 | 383 | 413 | 443 | 473 | 503 | 533 | 563 | 593 | 623 | 653 | 683 | 713 | 743 | 773 | 803 | 833 | 22 | 52 | 82 | 112 |
86 | 116 | 117 | 147 | 177 | 207 | 237 | 267 | 297 | 327 | 357 | 387 | 417 | 447 | 477 | 507 | 537 | 567 | 597 | 627 | 657 | 687 | 717 | 747 | 777 | 807 | 837 | 26 | 56 |
Je kunt dit resultaat nog op een 2x2 tapijt van het 29x29 magisch vierkant verschuiven en dan krijg je 840x zoveel oplossingen.
Je kunt in plaats van een shift van 2 naar rechts en 2 naar links ook een shift van 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 en 14 naar links/ rechts nemen (b.v. in het eerste patroon 13 naar rechts en in het 2e patroon 7 naar rechts óf 7 naar links), waarbij je alle 5,08148 x 10^64 panmagische 29x29 vierkanten kunt maken.
De shiftmethode werk voor oneven grootte vanaf 5x5 tot oneindig. Zie uitgewerkt voor 5x5, 7x7, 9x9 (1), 9x9 (2), 11x11, 13x13, 15x15 (1), 15x15 (2), 17x17, 19x19, 21x21 (1), 21x21 (2), 23x23, 25x25, 27x27 (1), 27x27 (2), 29x29 en 31x31
N.B.: Bij grootte is (oneven) veelvoud van 3 leidt de eenvoudige shiftmethode meestal tot een semimagisch resultaat (dus niet kloppend voor de diagonalen). Maar als bepaalde randvoorwaarden in acht worden genomen, kan ook voor grootte is (oneven) veelvoud van 3 de shiftmethode worden gebruikt.