Gebruik 4x hetzelfde meest perfect Franklin panmagisch 16x16 vierkant en twee reflecterende patronen om een meest perfect Franklin panmagisch 32x32 vierkant te maken.
Neem 1x getal
1 | 240 | 84 | 189 | 2 | 239 | 83 | 190 | 3 | 238 | 82 | 191 | 4 | 237 | 81 | 192 | 1 | 240 | 84 | 189 | 2 | 239 | 83 | 190 | 3 | 238 | 82 | 191 | 4 | 237 | 81 | 192 |
224 | 49 | 141 | 100 | 223 | 50 | 142 | 99 | 222 | 51 | 143 | 98 | 221 | 52 | 144 | 97 | 224 | 49 | 141 | 100 | 223 | 50 | 142 | 99 | 222 | 51 | 143 | 98 | 221 | 52 | 144 | 97 |
173 | 68 | 256 | 17 | 174 | 67 | 255 | 18 | 175 | 66 | 254 | 19 | 176 | 65 | 253 | 20 | 173 | 68 | 256 | 17 | 174 | 67 | 255 | 18 | 175 | 66 | 254 | 19 | 176 | 65 | 253 | 20 |
116 | 157 | 33 | 208 | 115 | 158 | 34 | 207 | 114 | 159 | 35 | 206 | 113 | 160 | 36 | 205 | 116 | 157 | 33 | 208 | 115 | 158 | 34 | 207 | 114 | 159 | 35 | 206 | 113 | 160 | 36 | 205 |
5 | 236 | 88 | 185 | 6 | 235 | 87 | 186 | 7 | 234 | 86 | 187 | 8 | 233 | 85 | 188 | 5 | 236 | 88 | 185 | 6 | 235 | 87 | 186 | 7 | 234 | 86 | 187 | 8 | 233 | 85 | 188 |
220 | 53 | 137 | 104 | 219 | 54 | 138 | 103 | 218 | 55 | 139 | 102 | 217 | 56 | 140 | 101 | 220 | 53 | 137 | 104 | 219 | 54 | 138 | 103 | 218 | 55 | 139 | 102 | 217 | 56 | 140 | 101 |
169 | 72 | 252 | 21 | 170 | 71 | 251 | 22 | 171 | 70 | 250 | 23 | 172 | 69 | 249 | 24 | 169 | 72 | 252 | 21 | 170 | 71 | 251 | 22 | 171 | 70 | 250 | 23 | 172 | 69 | 249 | 24 |
120 | 153 | 37 | 204 | 119 | 154 | 38 | 203 | 118 | 155 | 39 | 202 | 117 | 156 | 40 | 201 | 120 | 153 | 37 | 204 | 119 | 154 | 38 | 203 | 118 | 155 | 39 | 202 | 117 | 156 | 40 | 201 |
9 | 232 | 92 | 181 | 10 | 231 | 91 | 182 | 11 | 230 | 90 | 183 | 12 | 229 | 89 | 184 | 9 | 232 | 92 | 181 | 10 | 231 | 91 | 182 | 11 | 230 | 90 | 183 | 12 | 229 | 89 | 184 |
216 | 57 | 133 | 108 | 215 | 58 | 134 | 107 | 214 | 59 | 135 | 106 | 213 | 60 | 136 | 105 | 216 | 57 | 133 | 108 | 215 | 58 | 134 | 107 | 214 | 59 | 135 | 106 | 213 | 60 | 136 | 105 |
165 | 76 | 248 | 25 | 166 | 75 | 247 | 26 | 167 | 74 | 246 | 27 | 168 | 73 | 245 | 28 | 165 | 76 | 248 | 25 | 166 | 75 | 247 | 26 | 167 | 74 | 246 | 27 | 168 | 73 | 245 | 28 |
124 | 149 | 41 | 200 | 123 | 150 | 42 | 199 | 122 | 151 | 43 | 198 | 121 | 152 | 44 | 197 | 124 | 149 | 41 | 200 | 123 | 150 | 42 | 199 | 122 | 151 | 43 | 198 | 121 | 152 | 44 | 197 |
13 | 228 | 96 | 177 | 14 | 227 | 95 | 178 | 15 | 226 | 94 | 179 | 16 | 225 | 93 | 180 | 13 | 228 | 96 | 177 | 14 | 227 | 95 | 178 | 15 | 226 | 94 | 179 | 16 | 225 | 93 | 180 |
212 | 61 | 129 | 112 | 211 | 62 | 130 | 111 | 210 | 63 | 131 | 110 | 209 | 64 | 132 | 109 | 212 | 61 | 129 | 112 | 211 | 62 | 130 | 111 | 210 | 63 | 131 | 110 | 209 | 64 | 132 | 109 |
161 | 80 | 244 | 29 | 162 | 79 | 243 | 30 | 163 | 78 | 242 | 31 | 164 | 77 | 241 | 32 | 161 | 80 | 244 | 29 | 162 | 79 | 243 | 30 | 163 | 78 | 242 | 31 | 164 | 77 | 241 | 32 |
128 | 145 | 45 | 196 | 127 | 146 | 46 | 195 | 126 | 147 | 47 | 194 | 125 | 148 | 48 | 193 | 128 | 145 | 45 | 196 | 127 | 146 | 46 | 195 | 126 | 147 | 47 | 194 | 125 | 148 | 48 | 193 |
1 | 240 | 84 | 189 | 2 | 239 | 83 | 190 | 3 | 238 | 82 | 191 | 4 | 237 | 81 | 192 | 1 | 240 | 84 | 189 | 2 | 239 | 83 | 190 | 3 | 238 | 82 | 191 | 4 | 237 | 81 | 192 |
224 | 49 | 141 | 100 | 223 | 50 | 142 | 99 | 222 | 51 | 143 | 98 | 221 | 52 | 144 | 97 | 224 | 49 | 141 | 100 | 223 | 50 | 142 | 99 | 222 | 51 | 143 | 98 | 221 | 52 | 144 | 97 |
173 | 68 | 256 | 17 | 174 | 67 | 255 | 18 | 175 | 66 | 254 | 19 | 176 | 65 | 253 | 20 | 173 | 68 | 256 | 17 | 174 | 67 | 255 | 18 | 175 | 66 | 254 | 19 | 176 | 65 | 253 | 20 |
116 | 157 | 33 | 208 | 115 | 158 | 34 | 207 | 114 | 159 | 35 | 206 | 113 | 160 | 36 | 205 | 116 | 157 | 33 | 208 | 115 | 158 | 34 | 207 | 114 | 159 | 35 | 206 | 113 | 160 | 36 | 205 |
5 | 236 | 88 | 185 | 6 | 235 | 87 | 186 | 7 | 234 | 86 | 187 | 8 | 233 | 85 | 188 | 5 | 236 | 88 | 185 | 6 | 235 | 87 | 186 | 7 | 234 | 86 | 187 | 8 | 233 | 85 | 188 |
220 | 53 | 137 | 104 | 219 | 54 | 138 | 103 | 218 | 55 | 139 | 102 | 217 | 56 | 140 | 101 | 220 | 53 | 137 | 104 | 219 | 54 | 138 | 103 | 218 | 55 | 139 | 102 | 217 | 56 | 140 | 101 |
169 | 72 | 252 | 21 | 170 | 71 | 251 | 22 | 171 | 70 | 250 | 23 | 172 | 69 | 249 | 24 | 169 | 72 | 252 | 21 | 170 | 71 | 251 | 22 | 171 | 70 | 250 | 23 | 172 | 69 | 249 | 24 |
120 | 153 | 37 | 204 | 119 | 154 | 38 | 203 | 118 | 155 | 39 | 202 | 117 | 156 | 40 | 201 | 120 | 153 | 37 | 204 | 119 | 154 | 38 | 203 | 118 | 155 | 39 | 202 | 117 | 156 | 40 | 201 |
9 | 232 | 92 | 181 | 10 | 231 | 91 | 182 | 11 | 230 | 90 | 183 | 12 | 229 | 89 | 184 | 9 | 232 | 92 | 181 | 10 | 231 | 91 | 182 | 11 | 230 | 90 | 183 | 12 | 229 | 89 | 184 |
216 | 57 | 133 | 108 | 215 | 58 | 134 | 107 | 214 | 59 | 135 | 106 | 213 | 60 | 136 | 105 | 216 | 57 | 133 | 108 | 215 | 58 | 134 | 107 | 214 | 59 | 135 | 106 | 213 | 60 | 136 | 105 |
165 | 76 | 248 | 25 | 166 | 75 | 247 | 26 | 167 | 74 | 246 | 27 | 168 | 73 | 245 | 28 | 165 | 76 | 248 | 25 | 166 | 75 | 247 | 26 | 167 | 74 | 246 | 27 | 168 | 73 | 245 | 28 |
124 | 149 | 41 | 200 | 123 | 150 | 42 | 199 | 122 | 151 | 43 | 198 | 121 | 152 | 44 | 197 | 124 | 149 | 41 | 200 | 123 | 150 | 42 | 199 | 122 | 151 | 43 | 198 | 121 | 152 | 44 | 197 |
13 | 228 | 96 | 177 | 14 | 227 | 95 | 178 | 15 | 226 | 94 | 179 | 16 | 225 | 93 | 180 | 13 | 228 | 96 | 177 | 14 | 227 | 95 | 178 | 15 | 226 | 94 | 179 | 16 | 225 | 93 | 180 |
212 | 61 | 129 | 112 | 211 | 62 | 130 | 111 | 210 | 63 | 131 | 110 | 209 | 64 | 132 | 109 | 212 | 61 | 129 | 112 | 211 | 62 | 130 | 111 | 210 | 63 | 131 | 110 | 209 | 64 | 132 | 109 |
161 | 80 | 244 | 29 | 162 | 79 | 243 | 30 | 163 | 78 | 242 | 31 | 164 | 77 | 241 | 32 | 161 | 80 | 244 | 29 | 162 | 79 | 243 | 30 | 163 | 78 | 242 | 31 | 164 | 77 | 241 | 32 |
128 | 145 | 45 | 196 | 127 | 146 | 46 | 195 | 126 | 147 | 47 | 194 | 125 | 148 | 48 | 193 | 128 | 145 | 45 | 196 | 127 | 146 | 46 | 195 | 126 | 147 | 47 | 194 | 125 | 148 | 48 | 193 |
+256x getal
0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
+512x getal
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
= 32x32 meest perfect Franklin panmagisch vierkant
1 | 1008 | 340 | 701 | 2 | 1007 | 339 | 702 | 3 | 1006 | 338 | 703 | 4 | 1005 | 337 | 704 | 257 | 752 | 84 | 957 | 258 | 751 | 83 | 958 | 259 | 750 | 82 | 959 | 260 | 749 | 81 | 960 |
992 | 49 | 653 | 356 | 991 | 50 | 654 | 355 | 990 | 51 | 655 | 354 | 989 | 52 | 656 | 353 | 736 | 305 | 909 | 100 | 735 | 306 | 910 | 99 | 734 | 307 | 911 | 98 | 733 | 308 | 912 | 97 |
685 | 324 | 1024 | 17 | 686 | 323 | 1023 | 18 | 687 | 322 | 1022 | 19 | 688 | 321 | 1021 | 20 | 941 | 68 | 768 | 273 | 942 | 67 | 767 | 274 | 943 | 66 | 766 | 275 | 944 | 65 | 765 | 276 |
372 | 669 | 33 | 976 | 371 | 670 | 34 | 975 | 370 | 671 | 35 | 974 | 369 | 672 | 36 | 973 | 116 | 925 | 289 | 720 | 115 | 926 | 290 | 719 | 114 | 927 | 291 | 718 | 113 | 928 | 292 | 717 |
5 | 1004 | 344 | 697 | 6 | 1003 | 343 | 698 | 7 | 1002 | 342 | 699 | 8 | 1001 | 341 | 700 | 261 | 748 | 88 | 953 | 262 | 747 | 87 | 954 | 263 | 746 | 86 | 955 | 264 | 745 | 85 | 956 |
988 | 53 | 649 | 360 | 987 | 54 | 650 | 359 | 986 | 55 | 651 | 358 | 985 | 56 | 652 | 357 | 732 | 309 | 905 | 104 | 731 | 310 | 906 | 103 | 730 | 311 | 907 | 102 | 729 | 312 | 908 | 101 |
681 | 328 | 1020 | 21 | 682 | 327 | 1019 | 22 | 683 | 326 | 1018 | 23 | 684 | 325 | 1017 | 24 | 937 | 72 | 764 | 277 | 938 | 71 | 763 | 278 | 939 | 70 | 762 | 279 | 940 | 69 | 761 | 280 |
376 | 665 | 37 | 972 | 375 | 666 | 38 | 971 | 374 | 667 | 39 | 970 | 373 | 668 | 40 | 969 | 120 | 921 | 293 | 716 | 119 | 922 | 294 | 715 | 118 | 923 | 295 | 714 | 117 | 924 | 296 | 713 |
9 | 1000 | 348 | 693 | 10 | 999 | 347 | 694 | 11 | 998 | 346 | 695 | 12 | 997 | 345 | 696 | 265 | 744 | 92 | 949 | 266 | 743 | 91 | 950 | 267 | 742 | 90 | 951 | 268 | 741 | 89 | 952 |
984 | 57 | 645 | 364 | 983 | 58 | 646 | 363 | 982 | 59 | 647 | 362 | 981 | 60 | 648 | 361 | 728 | 313 | 901 | 108 | 727 | 314 | 902 | 107 | 726 | 315 | 903 | 106 | 725 | 316 | 904 | 105 |
677 | 332 | 1016 | 25 | 678 | 331 | 1015 | 26 | 679 | 330 | 1014 | 27 | 680 | 329 | 1013 | 28 | 933 | 76 | 760 | 281 | 934 | 75 | 759 | 282 | 935 | 74 | 758 | 283 | 936 | 73 | 757 | 284 |
380 | 661 | 41 | 968 | 379 | 662 | 42 | 967 | 378 | 663 | 43 | 966 | 377 | 664 | 44 | 965 | 124 | 917 | 297 | 712 | 123 | 918 | 298 | 711 | 122 | 919 | 299 | 710 | 121 | 920 | 300 | 709 |
13 | 996 | 352 | 689 | 14 | 995 | 351 | 690 | 15 | 994 | 350 | 691 | 16 | 993 | 349 | 692 | 269 | 740 | 96 | 945 | 270 | 739 | 95 | 946 | 271 | 738 | 94 | 947 | 272 | 737 | 93 | 948 |
980 | 61 | 641 | 368 | 979 | 62 | 642 | 367 | 978 | 63 | 643 | 366 | 977 | 64 | 644 | 365 | 724 | 317 | 897 | 112 | 723 | 318 | 898 | 111 | 722 | 319 | 899 | 110 | 721 | 320 | 900 | 109 |
673 | 336 | 1012 | 29 | 674 | 335 | 1011 | 30 | 675 | 334 | 1010 | 31 | 676 | 333 | 1009 | 32 | 929 | 80 | 756 | 285 | 930 | 79 | 755 | 286 | 931 | 78 | 754 | 287 | 932 | 77 | 753 | 288 |
384 | 657 | 45 | 964 | 383 | 658 | 46 | 963 | 382 | 659 | 47 | 962 | 381 | 660 | 48 | 961 | 128 | 913 | 301 | 708 | 127 | 914 | 302 | 707 | 126 | 915 | 303 | 706 | 125 | 916 | 304 | 705 |
513 | 496 | 852 | 189 | 514 | 495 | 851 | 190 | 515 | 494 | 850 | 191 | 516 | 493 | 849 | 192 | 769 | 240 | 596 | 445 | 770 | 239 | 595 | 446 | 771 | 238 | 594 | 447 | 772 | 237 | 593 | 448 |
480 | 561 | 141 | 868 | 479 | 562 | 142 | 867 | 478 | 563 | 143 | 866 | 477 | 564 | 144 | 865 | 224 | 817 | 397 | 612 | 223 | 818 | 398 | 611 | 222 | 819 | 399 | 610 | 221 | 820 | 400 | 609 |
173 | 836 | 512 | 529 | 174 | 835 | 511 | 530 | 175 | 834 | 510 | 531 | 176 | 833 | 509 | 532 | 429 | 580 | 256 | 785 | 430 | 579 | 255 | 786 | 431 | 578 | 254 | 787 | 432 | 577 | 253 | 788 |
884 | 157 | 545 | 464 | 883 | 158 | 546 | 463 | 882 | 159 | 547 | 462 | 881 | 160 | 548 | 461 | 628 | 413 | 801 | 208 | 627 | 414 | 802 | 207 | 626 | 415 | 803 | 206 | 625 | 416 | 804 | 205 |
517 | 492 | 856 | 185 | 518 | 491 | 855 | 186 | 519 | 490 | 854 | 187 | 520 | 489 | 853 | 188 | 773 | 236 | 600 | 441 | 774 | 235 | 599 | 442 | 775 | 234 | 598 | 443 | 776 | 233 | 597 | 444 |
476 | 565 | 137 | 872 | 475 | 566 | 138 | 871 | 474 | 567 | 139 | 870 | 473 | 568 | 140 | 869 | 220 | 821 | 393 | 616 | 219 | 822 | 394 | 615 | 218 | 823 | 395 | 614 | 217 | 824 | 396 | 613 |
169 | 840 | 508 | 533 | 170 | 839 | 507 | 534 | 171 | 838 | 506 | 535 | 172 | 837 | 505 | 536 | 425 | 584 | 252 | 789 | 426 | 583 | 251 | 790 | 427 | 582 | 250 | 791 | 428 | 581 | 249 | 792 |
888 | 153 | 549 | 460 | 887 | 154 | 550 | 459 | 886 | 155 | 551 | 458 | 885 | 156 | 552 | 457 | 632 | 409 | 805 | 204 | 631 | 410 | 806 | 203 | 630 | 411 | 807 | 202 | 629 | 412 | 808 | 201 |
521 | 488 | 860 | 181 | 522 | 487 | 859 | 182 | 523 | 486 | 858 | 183 | 524 | 485 | 857 | 184 | 777 | 232 | 604 | 437 | 778 | 231 | 603 | 438 | 779 | 230 | 602 | 439 | 780 | 229 | 601 | 440 |
472 | 569 | 133 | 876 | 471 | 570 | 134 | 875 | 470 | 571 | 135 | 874 | 469 | 572 | 136 | 873 | 216 | 825 | 389 | 620 | 215 | 826 | 390 | 619 | 214 | 827 | 391 | 618 | 213 | 828 | 392 | 617 |
165 | 844 | 504 | 537 | 166 | 843 | 503 | 538 | 167 | 842 | 502 | 539 | 168 | 841 | 501 | 540 | 421 | 588 | 248 | 793 | 422 | 587 | 247 | 794 | 423 | 586 | 246 | 795 | 424 | 585 | 245 | 796 |
892 | 149 | 553 | 456 | 891 | 150 | 554 | 455 | 890 | 151 | 555 | 454 | 889 | 152 | 556 | 453 | 636 | 405 | 809 | 200 | 635 | 406 | 810 | 199 | 634 | 407 | 811 | 198 | 633 | 408 | 812 | 197 |
525 | 484 | 864 | 177 | 526 | 483 | 863 | 178 | 527 | 482 | 862 | 179 | 528 | 481 | 861 | 180 | 781 | 228 | 608 | 433 | 782 | 227 | 607 | 434 | 783 | 226 | 606 | 435 | 784 | 225 | 605 | 436 |
468 | 573 | 129 | 880 | 467 | 574 | 130 | 879 | 466 | 575 | 131 | 878 | 465 | 576 | 132 | 877 | 212 | 829 | 385 | 624 | 211 | 830 | 386 | 623 | 210 | 831 | 387 | 622 | 209 | 832 | 388 | 621 |
161 | 848 | 500 | 541 | 162 | 847 | 499 | 542 | 163 | 846 | 498 | 543 | 164 | 845 | 497 | 544 | 417 | 592 | 244 | 797 | 418 | 591 | 243 | 798 | 419 | 590 | 242 | 799 | 420 | 589 | 241 | 800 |
896 | 145 | 557 | 452 | 895 | 146 | 558 | 451 | 894 | 147 | 559 | 450 | 893 | 148 | 560 | 449 | 640 | 401 | 813 | 196 | 639 | 402 | 814 | 195 | 638 | 403 | 815 | 194 | 637 | 404 | 816 | 193 |
Dit 32x32 magisch vierkant is panmagisch, 2x2 compact en kloppend voor 1/8 rij/kolom/ diagonaal. Stel ook vast dat het 32x32 magisch vierkant de strakke 'willem Barink' structuur heeft.
Deze methode werkt voor elke grootte is veelvoud van 4 vanaf 8x8. Zie uitgewerkt voor 8x8, 12x12, 16x16 (1a), 16x16 (1b), 16x16 (1c), 20x20, 24x24 (1a), 24x24 (1b), 28x28, 32x32 (1a), 32x32 (1b), 32x32 (1c) en 32x32 (1d)
Als je deze methode iets anders uitwerkt, dan krijg je het perfecte magische vierkant