Hoe maak ik (in 9 stappen) van één 4x4 Sudoku een meest perfect magisch 1024x1024 vierkant?
4x4 Sudoku
2 |
1 |
3 |
0 |
1 |
2 |
0 |
3 |
0 |
3 |
1 |
2 |
3 |
0 |
2 |
1 |
Stap 1
Eerst maken we van de 4x4 Sudoku een 4x4 panmagisch vierkant. Hiervoor hebben we naast de 4x4 Sudoku dezelfde 4x4 Sudoku, maar dan de over het 2x2 tapijt (één kolom naar rechts en één rij naar beneden) verschoven versie nodig.
4x4 Sudoku verschoven op 2x2 tapijt
2 |
1 |
3 |
0 |
2 |
1 |
3 |
0 |
1 |
2 |
0 |
3 |
1 |
2 |
0 |
3 |
0 |
3 |
1 |
2 |
0 |
3 |
1 |
2 |
3 |
0 |
2 |
1 |
3 |
0 |
2 |
1 |
2 |
1 |
3 |
0 |
2 |
1 |
3 |
0 |
1 |
2 |
0 |
3 |
1 |
2 |
0 |
3 |
0 |
3 |
1 |
2 |
0 |
3 |
1 |
2 |
3 |
0 |
2 |
1 |
3 |
0 |
2 |
1 |
Neem nu 4x een getal van de 4x4 Sudoku en 1x een getal van de verschoven 4x4 Sudoku en tel bij alle getallen nog eens 1 op, en je hebt een panmagisch 4x4 vierkant gemaakt.
4x getal + 1x getal = +1 = 4x4 panm.vierkant
2 |
1 |
3 |
0 |
2 |
0 |
3 |
1 |
10 |
4 |
15 |
1 |
11 |
5 |
16 |
2 |
|||
1 |
2 |
0 |
3 |
3 |
1 |
2 |
0 |
7 |
9 |
2 |
12 |
8 |
10 |
3 |
13 |
|||
0 |
3 |
1 |
2 |
0 |
2 |
1 |
3 |
0 |
14 |
5 |
11 |
1 |
15 |
6 |
12 |
|||
3 |
0 |
2 |
1 |
1 |
3 |
0 |
2 |
13 |
3 |
8 |
6 |
14 |
4 |
9 |
7 |
Stap 2
Nu maken we van het 4x4 panmagisch vierkant een 8x8 Franklin panmagisch vierkant. Hiervoor hebben we het 2x2 tapijt van het 4x4 panmagisch vierkant plus een 8x8 Sudoku patroon nodig.
Het 8x8 Sudoku patroon maken we van de 4x4 Sudoku, en wel als volgt. Plaats naast de 4x4 Sudoku een tweede 4x4 Sudoku, waarbij de linker- en rechterhelft worden omgewisseld. Plaats onder de eerste en tweede 4x4 Sudoku een derde en vierde 4x4 Sudoku, waarbij de onderste - en bovenste helft worden omgewisseld.
+ |
||||||||||
+ |
+ |
|||||||||
+ |
||||||||||
Neem 1x een getal uit het 2x2 tapijt van het 4x4 panmagisch vierkant en neem 16x een getal uit het 8x8 Sudoku patroon, en je hebt een 8x8 Franklin panmagisch vierkant gemaakt.
1x getal + 16x getal = 8x8 Franklin panmagisch vierkant
11 |
5 |
16 |
2 |
11 |
5 |
16 |
2 |
2 |
1 |
3 |
0 |
3 |
0 |
2 |
1 |
43 |
21 |
64 |
2 |
59 |
5 |
48 |
18 |
||||
8 |
10 |
3 |
13 |
8 |
10 |
3 |
13 |
1 |
2 |
0 |
3 |
0 |
3 |
1 |
2 |
24 |
42 |
3 |
61 |
8 |
58 |
19 |
45 |
||||
1 |
15 |
6 |
12 |
1 |
15 |
6 |
12 |
0 |
3 |
1 |
2 |
1 |
2 |
0 |
3 |
1 |
63 |
22 |
44 |
17 |
47 |
6 |
60 |
||||
14 |
4 |
9 |
7 |
14 |
4 |
9 |
7 |
3 |
0 |
2 |
1 |
2 |
1 |
3 |
0 |
62 |
4 |
41 |
23 |
46 |
20 |
57 |
7 |
||||
11 |
5 |
16 |
2 |
11 |
5 |
16 |
2 |
0 |
3 |
1 |
2 |
1 |
2 |
0 |
3 |
11 |
53 |
32 |
34 |
27 |
37 |
16 |
50 |
||||
8 |
10 |
3 |
13 |
8 |
10 |
3 |
13 |
3 |
0 |
2 |
1 |
2 |
1 |
3 |
0 |
56 |
10 |
35 |
29 |
40 |
26 |
51 |
13 |
||||
1 |
15 |
6 |
12 |
1 |
15 |
6 |
12 |
2 |
1 |
3 |
0 |
3 |
0 |
2 |
1 |
33 |
31 |
54 |
12 |
49 |
15 |
38 |
28 |
||||
14 |
4 |
9 |
7 |
14 |
4 |
9 |
7 |
1 |
2 |
0 |
3 |
0 |
3 |
1 |
2 |
30 |
36 |
9 |
55 |
14 |
52 |
25 |
39 |
Stap 3
Nu maken we van het 8x8 panmagisch vierkant een perfect 16x16 Franklin panmagisch vierkant. Hiervoor hebben we het 2x2 tapijt van het 8x8 Franklin panmagisch vierkant plus een 16x16 Sudoku patroon nodig. Het 16x16 Sudoku patroon maken we van het 8x8 Sudoku patroon, en wel als volgt. Plaats naast het 8x8 Sudoku patroon een tweede 8x8 Sudoku patroon, waarbij de linker- en rechterhelft worden omgewisseld. Plaats onder het eerste en tweede 8x8 Sudoku patroon een derde en vierde 8x8 Sudoku patroon, waarbij de onderste – en bovenste helft worden omgewisseld.
Neem 1x een getal uit het 2x2 tapijt van het 8x8 Franklin panmagisch vierkant en neem (16 x 4 = ) 64x een getal uit het 16x16 Sudoku patroon, en je hebt een 16x16 meest perfect (Franklin pan)magisch vierkant gemaakt.
1x getal
43 |
21 |
64 |
2 |
59 |
5 |
48 |
18 |
43 |
21 |
64 |
2 |
59 |
5 |
48 |
18 |
24 |
42 |
3 |
61 |
8 |
58 |
19 |
45 |
24 |
42 |
3 |
61 |
8 |
58 |
19 |
45 |
1 |
63 |
22 |
44 |
17 |
47 |
6 |
60 |
1 |
63 |
22 |
44 |
17 |
47 |
6 |
60 |
62 |
4 |
41 |
23 |
46 |
20 |
57 |
7 |
62 |
4 |
41 |
23 |
46 |
20 |
57 |
7 |
11 |
53 |
32 |
34 |
27 |
37 |
16 |
50 |
11 |
53 |
32 |
34 |
27 |
37 |
16 |
50 |
56 |
10 |
35 |
29 |
40 |
26 |
51 |
13 |
56 |
10 |
35 |
29 |
40 |
26 |
51 |
13 |
33 |
31 |
54 |
12 |
49 |
15 |
38 |
28 |
33 |
31 |
54 |
12 |
49 |
15 |
38 |
28 |
30 |
36 |
9 |
55 |
14 |
52 |
25 |
39 |
30 |
36 |
9 |
55 |
14 |
52 |
25 |
39 |
43 |
21 |
64 |
2 |
59 |
5 |
48 |
18 |
43 |
21 |
64 |
2 |
59 |
5 |
48 |
18 |
24 |
42 |
3 |
61 |
8 |
58 |
19 |
45 |
24 |
42 |
3 |
61 |
8 |
58 |
19 |
45 |
1 |
63 |
22 |
44 |
17 |
47 |
6 |
60 |
1 |
63 |
22 |
44 |
17 |
47 |
6 |
60 |
62 |
4 |
41 |
23 |
46 |
20 |
57 |
7 |
62 |
4 |
41 |
23 |
46 |
20 |
57 |
7 |
11 |
53 |
32 |
34 |
27 |
37 |
16 |
50 |
11 |
53 |
32 |
34 |
27 |
37 |
16 |
50 |
56 |
10 |
35 |
29 |
40 |
26 |
51 |
13 |
56 |
10 |
35 |
29 |
40 |
26 |
51 |
13 |
33 |
31 |
54 |
12 |
49 |
15 |
38 |
28 |
33 |
31 |
54 |
12 |
49 |
15 |
38 |
28 |
30 |
36 |
9 |
55 |
14 |
52 |
25 |
39 |
30 |
36 |
9 |
55 |
14 |
52 |
25 |
39 |
+
64x getal
2 |
1 |
3 |
0 |
3 |
0 |
2 |
1 |
3 |
0 |
2 |
1 |
2 |
1 |
3 |
0 |
1 |
2 |
0 |
3 |
0 |
3 |
1 |
2 |
0 |
3 |
1 |
2 |
1 |
2 |
0 |
3 |
0 |
3 |
1 |
2 |
1 |
2 |
0 |
3 |
1 |
2 |
0 |
3 |
0 |
3 |
1 |
2 |
3 |
0 |
2 |
1 |
2 |
1 |
3 |
0 |
2 |
1 |
3 |
0 |
3 |
0 |
2 |
1 |
0 |
3 |
1 |
2 |
1 |
2 |
0 |
3 |
1 |
2 |
0 |
3 |
0 |
3 |
1 |
2 |
3 |
0 |
2 |
1 |
2 |
1 |
3 |
0 |
2 |
1 |
3 |
0 |
3 |
0 |
2 |
1 |
2 |
1 |
3 |
0 |
3 |
0 |
2 |
1 |
3 |
0 |
2 |
1 |
2 |
1 |
3 |
0 |
1 |
2 |
0 |
3 |
0 |
3 |
1 |
2 |
0 |
3 |
1 |
2 |
1 |
2 |
0 |
3 |
0 |
3 |
1 |
2 |
1 |
2 |
0 |
3 |
1 |
2 |
0 |
3 |
0 |
3 |
1 |
2 |
3 |
0 |
2 |
1 |
2 |
1 |
3 |
0 |
2 |
1 |
3 |
0 |
3 |
0 |
2 |
1 |
2 |
1 |
3 |
0 |
3 |
0 |
2 |
1 |
3 |
0 |
2 |
1 |
2 |
1 |
3 |
0 |
1 |
2 |
0 |
3 |
0 |
3 |
1 |
2 |
0 |
3 |
1 |
2 |
1 |
2 |
0 |
3 |
2 |
1 |
3 |
0 |
3 |
0 |
2 |
1 |
3 |
0 |
2 |
1 |
2 |
1 |
3 |
0 |
1 |
2 |
0 |
3 |
0 |
3 |
1 |
2 |
0 |
3 |
1 |
2 |
1 |
2 |
0 |
3 |
0 |
3 |
1 |
2 |
1 |
2 |
0 |
3 |
1 |
2 |
0 |
3 |
0 |
3 |
1 |
2 |
3 |
0 |
2 |
1 |
2 |
1 |
3 |
0 |
2 |
1 |
3 |
0 |
3 |
0 |
2 |
1 |
=
Meest perfect 16x16 (Franklin pan)magisch vierkant
171 |
85 |
256 |
2 |
251 |
5 |
176 |
82 |
235 |
21 |
192 |
66 |
187 |
69 |
240 |
18 |
88 |
170 |
3 |
253 |
8 |
250 |
83 |
173 |
24 |
234 |
67 |
189 |
72 |
186 |
19 |
237 |
1 |
255 |
86 |
172 |
81 |
175 |
6 |
252 |
65 |
191 |
22 |
236 |
17 |
239 |
70 |
188 |
254 |
4 |
169 |
87 |
174 |
84 |
249 |
7 |
190 |
68 |
233 |
23 |
238 |
20 |
185 |
71 |
11 |
245 |
96 |
162 |
91 |
165 |
16 |
242 |
75 |
181 |
32 |
226 |
27 |
229 |
80 |
178 |
248 |
10 |
163 |
93 |
168 |
90 |
243 |
13 |
184 |
74 |
227 |
29 |
232 |
26 |
179 |
77 |
161 |
95 |
246 |
12 |
241 |
15 |
166 |
92 |
225 |
31 |
182 |
76 |
177 |
79 |
230 |
28 |
94 |
164 |
9 |
247 |
14 |
244 |
89 |
167 |
30 |
228 |
73 |
183 |
78 |
180 |
25 |
231 |
43 |
213 |
128 |
130 |
123 |
133 |
48 |
210 |
107 |
149 |
64 |
194 |
59 |
197 |
112 |
146 |
216 |
42 |
131 |
125 |
136 |
122 |
211 |
45 |
152 |
106 |
195 |
61 |
200 |
58 |
147 |
109 |
129 |
127 |
214 |
44 |
209 |
47 |
134 |
124 |
193 |
63 |
150 |
108 |
145 |
111 |
198 |
60 |
126 |
132 |
41 |
215 |
46 |
212 |
121 |
135 |
62 |
196 |
105 |
151 |
110 |
148 |
57 |
199 |
139 |
117 |
224 |
34 |
219 |
37 |
144 |
114 |
203 |
53 |
160 |
98 |
155 |
101 |
208 |
50 |
120 |
138 |
35 |
221 |
40 |
218 |
115 |
141 |
56 |
202 |
99 |
157 |
104 |
154 |
51 |
205 |
33 |
223 |
118 |
140 |
113 |
143 |
38 |
220 |
97 |
159 |
54 |
204 |
49 |
207 |
102 |
156 |
222 |
36 |
137 |
119 |
142 |
116 |
217 |
39 |
158 |
100 |
201 |
55 |
206 |
52 |
153 |
103 |
Stap 4
Voer stap 3 uit, maar dan om het 32x32 magisch vierkant te maken.
Neem 1x getal uit 2x2 meest perfect 16x16 magisch vierkant
171 | 82 | 256 | 5 | 251 | 2 | 176 | 85 | 235 | 18 | 192 | 69 | 187 | 66 | 240 | 21 | 171 | 82 | 256 | 5 | 251 | 2 | 176 | 85 | 235 | 18 | 192 | 69 | 187 | 66 | 240 | 21 |
94 | 167 | 9 | 244 | 14 | 247 | 89 | 164 | 30 | 231 | 73 | 180 | 78 | 183 | 25 | 228 | 94 | 167 | 9 | 244 | 14 | 247 | 89 | 164 | 30 | 231 | 73 | 180 | 78 | 183 | 25 | 228 |
1 | 252 | 86 | 175 | 81 | 172 | 6 | 255 | 65 | 188 | 22 | 239 | 17 | 236 | 70 | 191 | 1 | 252 | 86 | 175 | 81 | 172 | 6 | 255 | 65 | 188 | 22 | 239 | 17 | 236 | 70 | 191 |
248 | 13 | 163 | 90 | 168 | 93 | 243 | 10 | 184 | 77 | 227 | 26 | 232 | 29 | 179 | 74 | 248 | 13 | 163 | 90 | 168 | 93 | 243 | 10 | 184 | 77 | 227 | 26 | 232 | 29 | 179 | 74 |
11 | 242 | 96 | 165 | 91 | 162 | 16 | 245 | 75 | 178 | 32 | 229 | 27 | 226 | 80 | 181 | 11 | 242 | 96 | 165 | 91 | 162 | 16 | 245 | 75 | 178 | 32 | 229 | 27 | 226 | 80 | 181 |
254 | 7 | 169 | 84 | 174 | 87 | 249 | 4 | 190 | 71 | 233 | 20 | 238 | 23 | 185 | 68 | 254 | 7 | 169 | 84 | 174 | 87 | 249 | 4 | 190 | 71 | 233 | 20 | 238 | 23 | 185 | 68 |
161 | 92 | 246 | 15 | 241 | 12 | 166 | 95 | 225 | 28 | 182 | 79 | 177 | 76 | 230 | 31 | 161 | 92 | 246 | 15 | 241 | 12 | 166 | 95 | 225 | 28 | 182 | 79 | 177 | 76 | 230 | 31 |
88 | 173 | 3 | 250 | 8 | 253 | 83 | 170 | 24 | 237 | 67 | 186 | 72 | 189 | 19 | 234 | 88 | 173 | 3 | 250 | 8 | 253 | 83 | 170 | 24 | 237 | 67 | 186 | 72 | 189 | 19 | 234 |
43 | 210 | 128 | 133 | 123 | 130 | 48 | 213 | 107 | 146 | 64 | 197 | 59 | 194 | 112 | 149 | 43 | 210 | 128 | 133 | 123 | 130 | 48 | 213 | 107 | 146 | 64 | 197 | 59 | 194 | 112 | 149 |
222 | 39 | 137 | 116 | 142 | 119 | 217 | 36 | 158 | 103 | 201 | 52 | 206 | 55 | 153 | 100 | 222 | 39 | 137 | 116 | 142 | 119 | 217 | 36 | 158 | 103 | 201 | 52 | 206 | 55 | 153 | 100 |
129 | 124 | 214 | 47 | 209 | 44 | 134 | 127 | 193 | 60 | 150 | 111 | 145 | 108 | 198 | 63 | 129 | 124 | 214 | 47 | 209 | 44 | 134 | 127 | 193 | 60 | 150 | 111 | 145 | 108 | 198 | 63 |
120 | 141 | 35 | 218 | 40 | 221 | 115 | 138 | 56 | 205 | 99 | 154 | 104 | 157 | 51 | 202 | 120 | 141 | 35 | 218 | 40 | 221 | 115 | 138 | 56 | 205 | 99 | 154 | 104 | 157 | 51 | 202 |
139 | 114 | 224 | 37 | 219 | 34 | 144 | 117 | 203 | 50 | 160 | 101 | 155 | 98 | 208 | 53 | 139 | 114 | 224 | 37 | 219 | 34 | 144 | 117 | 203 | 50 | 160 | 101 | 155 | 98 | 208 | 53 |
126 | 135 | 41 | 212 | 46 | 215 | 121 | 132 | 62 | 199 | 105 | 148 | 110 | 151 | 57 | 196 | 126 | 135 | 41 | 212 | 46 | 215 | 121 | 132 | 62 | 199 | 105 | 148 | 110 | 151 | 57 | 196 |
33 | 220 | 118 | 143 | 113 | 140 | 38 | 223 | 97 | 156 | 54 | 207 | 49 | 204 | 102 | 159 | 33 | 220 | 118 | 143 | 113 | 140 | 38 | 223 | 97 | 156 | 54 | 207 | 49 | 204 | 102 | 159 |
216 | 45 | 131 | 122 | 136 | 125 | 211 | 42 | 152 | 109 | 195 | 58 | 200 | 61 | 147 | 106 | 216 | 45 | 131 | 122 | 136 | 125 | 211 | 42 | 152 | 109 | 195 | 58 | 200 | 61 | 147 | 106 |
171 | 82 | 256 | 5 | 251 | 2 | 176 | 85 | 235 | 18 | 192 | 69 | 187 | 66 | 240 | 21 | 171 | 82 | 256 | 5 | 251 | 2 | 176 | 85 | 235 | 18 | 192 | 69 | 187 | 66 | 240 | 21 |
94 | 167 | 9 | 244 | 14 | 247 | 89 | 164 | 30 | 231 | 73 | 180 | 78 | 183 | 25 | 228 | 94 | 167 | 9 | 244 | 14 | 247 | 89 | 164 | 30 | 231 | 73 | 180 | 78 | 183 | 25 | 228 |
1 | 252 | 86 | 175 | 81 | 172 | 6 | 255 | 65 | 188 | 22 | 239 | 17 | 236 | 70 | 191 | 1 | 252 | 86 | 175 | 81 | 172 | 6 | 255 | 65 | 188 | 22 | 239 | 17 | 236 | 70 | 191 |
248 | 13 | 163 | 90 | 168 | 93 | 243 | 10 | 184 | 77 | 227 | 26 | 232 | 29 | 179 | 74 | 248 | 13 | 163 | 90 | 168 | 93 | 243 | 10 | 184 | 77 | 227 | 26 | 232 | 29 | 179 | 74 |
11 | 242 | 96 | 165 | 91 | 162 | 16 | 245 | 75 | 178 | 32 | 229 | 27 | 226 | 80 | 181 | 11 | 242 | 96 | 165 | 91 | 162 | 16 | 245 | 75 | 178 | 32 | 229 | 27 | 226 | 80 | 181 |
254 | 7 | 169 | 84 | 174 | 87 | 249 | 4 | 190 | 71 | 233 | 20 | 238 | 23 | 185 | 68 | 254 | 7 | 169 | 84 | 174 | 87 | 249 | 4 | 190 | 71 | 233 | 20 | 238 | 23 | 185 | 68 |
161 | 92 | 246 | 15 | 241 | 12 | 166 | 95 | 225 | 28 | 182 | 79 | 177 | 76 | 230 | 31 | 161 | 92 | 246 | 15 | 241 | 12 | 166 | 95 | 225 | 28 | 182 | 79 | 177 | 76 | 230 | 31 |
88 | 173 | 3 | 250 | 8 | 253 | 83 | 170 | 24 | 237 | 67 | 186 | 72 | 189 | 19 | 234 | 88 | 173 | 3 | 250 | 8 | 253 | 83 | 170 | 24 | 237 | 67 | 186 | 72 | 189 | 19 | 234 |
43 | 210 | 128 | 133 | 123 | 130 | 48 | 213 | 107 | 146 | 64 | 197 | 59 | 194 | 112 | 149 | 43 | 210 | 128 | 133 | 123 | 130 | 48 | 213 | 107 | 146 | 64 | 197 | 59 | 194 | 112 | 149 |
222 | 39 | 137 | 116 | 142 | 119 | 217 | 36 | 158 | 103 | 201 | 52 | 206 | 55 | 153 | 100 | 222 | 39 | 137 | 116 | 142 | 119 | 217 | 36 | 158 | 103 | 201 | 52 | 206 | 55 | 153 | 100 |
129 | 124 | 214 | 47 | 209 | 44 | 134 | 127 | 193 | 60 | 150 | 111 | 145 | 108 | 198 | 63 | 129 | 124 | 214 | 47 | 209 | 44 | 134 | 127 | 193 | 60 | 150 | 111 | 145 | 108 | 198 | 63 |
120 | 141 | 35 | 218 | 40 | 221 | 115 | 138 | 56 | 205 | 99 | 154 | 104 | 157 | 51 | 202 | 120 | 141 | 35 | 218 | 40 | 221 | 115 | 138 | 56 | 205 | 99 | 154 | 104 | 157 | 51 | 202 |
139 | 114 | 224 | 37 | 219 | 34 | 144 | 117 | 203 | 50 | 160 | 101 | 155 | 98 | 208 | 53 | 139 | 114 | 224 | 37 | 219 | 34 | 144 | 117 | 203 | 50 | 160 | 101 | 155 | 98 | 208 | 53 |
126 | 135 | 41 | 212 | 46 | 215 | 121 | 132 | 62 | 199 | 105 | 148 | 110 | 151 | 57 | 196 | 126 | 135 | 41 | 212 | 46 | 215 | 121 | 132 | 62 | 199 | 105 | 148 | 110 | 151 | 57 | 196 |
33 | 220 | 118 | 143 | 113 | 140 | 38 | 223 | 97 | 156 | 54 | 207 | 49 | 204 | 102 | 159 | 33 | 220 | 118 | 143 | 113 | 140 | 38 | 223 | 97 | 156 | 54 | 207 | 49 | 204 | 102 | 159 |
216 | 45 | 131 | 122 | 136 | 125 | 211 | 42 | 152 | 109 | 195 | 58 | 200 | 61 | 147 | 106 | 216 | 45 | 131 | 122 | 136 | 125 | 211 | 42 | 152 | 109 | 195 | 58 | 200 | 61 | 147 | 106 |
+ 256x getal uit Sudokupatroon
2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 |
1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 |
0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 |
3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 |
0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 |
3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 |
2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 |
1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 |
0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 |
3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 |
2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 |
1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 |
2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 |
1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 |
0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 |
3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 |
0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 |
3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 |
2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 |
1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 |
2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 |
1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 |
0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 |
3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 |
2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 |
1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 |
0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 |
3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 |
0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 |
3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 |
2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 |
1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 |
= 32x32 meest perfect (Franklin pan)magisch vierkant
683 | 338 | 1024 | 5 | 1019 | 2 | 688 | 341 | 1003 | 18 | 704 | 325 | 699 | 322 | 1008 | 21 | 939 | 82 | 768 | 261 | 763 | 258 | 944 | 85 | 747 | 274 | 960 | 69 | 955 | 66 | 752 | 277 |
350 | 679 | 9 | 1012 | 14 | 1015 | 345 | 676 | 30 | 999 | 329 | 692 | 334 | 695 | 25 | 996 | 94 | 935 | 265 | 756 | 270 | 759 | 89 | 932 | 286 | 743 | 73 | 948 | 78 | 951 | 281 | 740 |
1 | 1020 | 342 | 687 | 337 | 684 | 6 | 1023 | 321 | 700 | 22 | 1007 | 17 | 1004 | 326 | 703 | 257 | 764 | 86 | 943 | 81 | 940 | 262 | 767 | 65 | 956 | 278 | 751 | 273 | 748 | 70 | 959 |
1016 | 13 | 675 | 346 | 680 | 349 | 1011 | 10 | 696 | 333 | 995 | 26 | 1000 | 29 | 691 | 330 | 760 | 269 | 931 | 90 | 936 | 93 | 755 | 266 | 952 | 77 | 739 | 282 | 744 | 285 | 947 | 74 |
11 | 1010 | 352 | 677 | 347 | 674 | 16 | 1013 | 331 | 690 | 32 | 997 | 27 | 994 | 336 | 693 | 267 | 754 | 96 | 933 | 91 | 930 | 272 | 757 | 75 | 946 | 288 | 741 | 283 | 738 | 80 | 949 |
1022 | 7 | 681 | 340 | 686 | 343 | 1017 | 4 | 702 | 327 | 1001 | 20 | 1006 | 23 | 697 | 324 | 766 | 263 | 937 | 84 | 942 | 87 | 761 | 260 | 958 | 71 | 745 | 276 | 750 | 279 | 953 | 68 |
673 | 348 | 1014 | 15 | 1009 | 12 | 678 | 351 | 993 | 28 | 694 | 335 | 689 | 332 | 998 | 31 | 929 | 92 | 758 | 271 | 753 | 268 | 934 | 95 | 737 | 284 | 950 | 79 | 945 | 76 | 742 | 287 |
344 | 685 | 3 | 1018 | 8 | 1021 | 339 | 682 | 24 | 1005 | 323 | 698 | 328 | 701 | 19 | 1002 | 88 | 941 | 259 | 762 | 264 | 765 | 83 | 938 | 280 | 749 | 67 | 954 | 72 | 957 | 275 | 746 |
43 | 978 | 384 | 645 | 379 | 642 | 48 | 981 | 363 | 658 | 64 | 965 | 59 | 962 | 368 | 661 | 299 | 722 | 128 | 901 | 123 | 898 | 304 | 725 | 107 | 914 | 320 | 709 | 315 | 706 | 112 | 917 |
990 | 39 | 649 | 372 | 654 | 375 | 985 | 36 | 670 | 359 | 969 | 52 | 974 | 55 | 665 | 356 | 734 | 295 | 905 | 116 | 910 | 119 | 729 | 292 | 926 | 103 | 713 | 308 | 718 | 311 | 921 | 100 |
641 | 380 | 982 | 47 | 977 | 44 | 646 | 383 | 961 | 60 | 662 | 367 | 657 | 364 | 966 | 63 | 897 | 124 | 726 | 303 | 721 | 300 | 902 | 127 | 705 | 316 | 918 | 111 | 913 | 108 | 710 | 319 |
376 | 653 | 35 | 986 | 40 | 989 | 371 | 650 | 56 | 973 | 355 | 666 | 360 | 669 | 51 | 970 | 120 | 909 | 291 | 730 | 296 | 733 | 115 | 906 | 312 | 717 | 99 | 922 | 104 | 925 | 307 | 714 |
651 | 370 | 992 | 37 | 987 | 34 | 656 | 373 | 971 | 50 | 672 | 357 | 667 | 354 | 976 | 53 | 907 | 114 | 736 | 293 | 731 | 290 | 912 | 117 | 715 | 306 | 928 | 101 | 923 | 98 | 720 | 309 |
382 | 647 | 41 | 980 | 46 | 983 | 377 | 644 | 62 | 967 | 361 | 660 | 366 | 663 | 57 | 964 | 126 | 903 | 297 | 724 | 302 | 727 | 121 | 900 | 318 | 711 | 105 | 916 | 110 | 919 | 313 | 708 |
33 | 988 | 374 | 655 | 369 | 652 | 38 | 991 | 353 | 668 | 54 | 975 | 49 | 972 | 358 | 671 | 289 | 732 | 118 | 911 | 113 | 908 | 294 | 735 | 97 | 924 | 310 | 719 | 305 | 716 | 102 | 927 |
984 | 45 | 643 | 378 | 648 | 381 | 979 | 42 | 664 | 365 | 963 | 58 | 968 | 61 | 659 | 362 | 728 | 301 | 899 | 122 | 904 | 125 | 723 | 298 | 920 | 109 | 707 | 314 | 712 | 317 | 915 | 106 |
171 | 850 | 512 | 517 | 507 | 514 | 176 | 853 | 491 | 530 | 192 | 837 | 187 | 834 | 496 | 533 | 427 | 594 | 256 | 773 | 251 | 770 | 432 | 597 | 235 | 786 | 448 | 581 | 443 | 578 | 240 | 789 |
862 | 167 | 521 | 500 | 526 | 503 | 857 | 164 | 542 | 487 | 841 | 180 | 846 | 183 | 537 | 484 | 606 | 423 | 777 | 244 | 782 | 247 | 601 | 420 | 798 | 231 | 585 | 436 | 590 | 439 | 793 | 228 |
513 | 508 | 854 | 175 | 849 | 172 | 518 | 511 | 833 | 188 | 534 | 495 | 529 | 492 | 838 | 191 | 769 | 252 | 598 | 431 | 593 | 428 | 774 | 255 | 577 | 444 | 790 | 239 | 785 | 236 | 582 | 447 |
504 | 525 | 163 | 858 | 168 | 861 | 499 | 522 | 184 | 845 | 483 | 538 | 488 | 541 | 179 | 842 | 248 | 781 | 419 | 602 | 424 | 605 | 243 | 778 | 440 | 589 | 227 | 794 | 232 | 797 | 435 | 586 |
523 | 498 | 864 | 165 | 859 | 162 | 528 | 501 | 843 | 178 | 544 | 485 | 539 | 482 | 848 | 181 | 779 | 242 | 608 | 421 | 603 | 418 | 784 | 245 | 587 | 434 | 800 | 229 | 795 | 226 | 592 | 437 |
510 | 519 | 169 | 852 | 174 | 855 | 505 | 516 | 190 | 839 | 489 | 532 | 494 | 535 | 185 | 836 | 254 | 775 | 425 | 596 | 430 | 599 | 249 | 772 | 446 | 583 | 233 | 788 | 238 | 791 | 441 | 580 |
161 | 860 | 502 | 527 | 497 | 524 | 166 | 863 | 481 | 540 | 182 | 847 | 177 | 844 | 486 | 543 | 417 | 604 | 246 | 783 | 241 | 780 | 422 | 607 | 225 | 796 | 438 | 591 | 433 | 588 | 230 | 799 |
856 | 173 | 515 | 506 | 520 | 509 | 851 | 170 | 536 | 493 | 835 | 186 | 840 | 189 | 531 | 490 | 600 | 429 | 771 | 250 | 776 | 253 | 595 | 426 | 792 | 237 | 579 | 442 | 584 | 445 | 787 | 234 |
555 | 466 | 896 | 133 | 891 | 130 | 560 | 469 | 875 | 146 | 576 | 453 | 571 | 450 | 880 | 149 | 811 | 210 | 640 | 389 | 635 | 386 | 816 | 213 | 619 | 402 | 832 | 197 | 827 | 194 | 624 | 405 |
478 | 551 | 137 | 884 | 142 | 887 | 473 | 548 | 158 | 871 | 457 | 564 | 462 | 567 | 153 | 868 | 222 | 807 | 393 | 628 | 398 | 631 | 217 | 804 | 414 | 615 | 201 | 820 | 206 | 823 | 409 | 612 |
129 | 892 | 470 | 559 | 465 | 556 | 134 | 895 | 449 | 572 | 150 | 879 | 145 | 876 | 454 | 575 | 385 | 636 | 214 | 815 | 209 | 812 | 390 | 639 | 193 | 828 | 406 | 623 | 401 | 620 | 198 | 831 |
888 | 141 | 547 | 474 | 552 | 477 | 883 | 138 | 568 | 461 | 867 | 154 | 872 | 157 | 563 | 458 | 632 | 397 | 803 | 218 | 808 | 221 | 627 | 394 | 824 | 205 | 611 | 410 | 616 | 413 | 819 | 202 |
139 | 882 | 480 | 549 | 475 | 546 | 144 | 885 | 459 | 562 | 160 | 869 | 155 | 866 | 464 | 565 | 395 | 626 | 224 | 805 | 219 | 802 | 400 | 629 | 203 | 818 | 416 | 613 | 411 | 610 | 208 | 821 |
894 | 135 | 553 | 468 | 558 | 471 | 889 | 132 | 574 | 455 | 873 | 148 | 878 | 151 | 569 | 452 | 638 | 391 | 809 | 212 | 814 | 215 | 633 | 388 | 830 | 199 | 617 | 404 | 622 | 407 | 825 | 196 |
545 | 476 | 886 | 143 | 881 | 140 | 550 | 479 | 865 | 156 | 566 | 463 | 561 | 460 | 870 | 159 | 801 | 220 | 630 | 399 | 625 | 396 | 806 | 223 | 609 | 412 | 822 | 207 | 817 | 204 | 614 | 415 |
472 | 557 | 131 | 890 | 136 | 893 | 467 | 554 | 152 | 877 | 451 | 570 | 456 | 573 | 147 | 874 | 216 | 813 | 387 | 634 | 392 | 637 | 211 | 810 | 408 | 621 | 195 | 826 | 200 | 829 | 403 | 618 |
Stap 5 t/m 9
Herhaal stap 4, vijf maal. Maak achtereenvolgens een meest perfect (Franklin pan)magisch 64x64, 128x128, 256x256, 512x512 en 1024x1024 vierkant (= meest perfect magisch 1024x1024 vierkant). Stel
vast dat alle stappen en handelingen daarbinnen telkens uit dezelfde 4x4 Sudoku zijn voortgekomen!
Wat is het bereik van deze methode?
De 4x4 Sudoku is een ‘verdubbellaar’. Ik vond de volgende 32 verdubbellaars:
1 |
0 |
3 |
1 |
2 |
2 |
3 |
1 |
2 |
0 |
3 |
1 |
2 |
0 |
3 |
4 |
2 |
0 |
3 |
1 |
||||||||||
3 |
0 |
2 |
1 |
0 |
2 |
1 |
3 |
2 |
1 |
3 |
0 |
1 |
3 |
0 |
2 |
||||||||||||||
2 |
1 |
3 |
0 |
1 |
3 |
0 |
2 |
3 |
0 |
2 |
1 |
0 |
2 |
1 |
3 |
||||||||||||||
1 |
2 |
0 |
3 |
2 |
0 |
3 |
1 |
0 |
3 |
1 |
2 |
3 |
1 |
2 |
0 |
||||||||||||||
5 |
3 |
0 |
2 |
1 |
6 |
0 |
2 |
1 |
3 |
7 |
2 |
1 |
3 |
0 |
8 |
1 |
3 |
0 |
2 |
||||||||||
2 |
1 |
3 |
0 |
1 |
3 |
0 |
2 |
3 |
0 |
2 |
1 |
0 |
2 |
1 |
3 |
||||||||||||||
1 |
2 |
0 |
3 |
2 |
0 |
3 |
1 |
0 |
3 |
1 |
2 |
3 |
1 |
2 |
0 |
||||||||||||||
0 |
3 |
1 |
2 |
3 |
1 |
2 |
0 |
1 |
2 |
0 |
3 |
2 |
0 |
3 |
1 |
||||||||||||||
9 |
2 |
1 |
3 |
0 |
10 |
1 |
3 |
0 |
2 |
11 |
3 |
0 |
2 |
1 |
12 |
0 |
2 |
1 |
3 |
||||||||||
1 |
2 |
0 |
3 |
2 |
0 |
3 |
1 |
0 |
3 |
1 |
2 |
3 |
1 |
2 |
0 |
||||||||||||||
0 |
3 |
1 |
2 |
3 |
1 |
2 |
0 |
1 |
2 |
0 |
3 |
2 |
0 |
3 |
1 |
||||||||||||||
3 |
0 |
2 |
1 |
0 |
2 |
1 |
3 |
2 |
1 |
3 |
0 |
1 |
3 |
0 |
2 |
||||||||||||||
13 |
1 |
2 |
0 |
3 |
14 |
2 |
0 |
3 |
1 |
15 |
0 |
3 |
1 |
2 |
16 |
3 |
1 |
2 |
0 |
||||||||||
0 |
3 |
1 |
2 |
3 |
1 |
2 |
0 |
1 |
2 |
0 |
3 |
2 |
0 |
3 |
1 |
||||||||||||||
3 |
0 |
2 |
1 |
0 |
2 |
1 |
3 |
2 |
1 |
3 |
0 |
1 |
3 |
0 |
2 |
||||||||||||||
2 |
1 |
3 |
0 |
1 |
3 |
0 |
2 |
3 |
0 |
2 |
1 |
0 |
2 |
1 |
3 |
||||||||||||||
17 |
2 |
1 |
0 |
3 |
18 |
1 |
0 |
3 |
2 |
19 |
0 |
3 |
2 |
1 |
20 |
3 |
2 |
1 |
0 |
||||||||||
0 |
3 |
2 |
1 |
3 |
2 |
1 |
0 |
2 |
1 |
0 |
3 |
1 |
0 |
3 |
2 |
||||||||||||||
3 |
0 |
1 |
2 |
0 |
1 |
2 |
3 |
1 |
2 |
3 |
0 |
2 |
3 |
0 |
1 |
||||||||||||||
1 |
2 |
3 |
0 |
2 |
3 |
0 |
1 |
3 |
0 |
1 |
2 |
0 |
1 |
2 |
3 |
||||||||||||||
21 |
0 |
3 |
2 |
1 |
22 |
3 |
2 |
1 |
0 |
23 |
2 |
1 |
0 |
3 |
24 |
1 |
0 |
3 |
2 |
||||||||||
3 |
0 |
1 |
2 |
0 |
1 |
2 |
3 |
1 |
2 |
3 |
0 |
2 |
3 |
0 |
1 |
||||||||||||||
1 |
2 |
3 |
0 |
2 |
3 |
0 |
1 |
3 |
0 |
1 |
2 |
0 |
1 |
2 |
3 |
||||||||||||||
2 |
1 |
0 |
3 |
1 |
0 |
3 |
2 |
0 |
3 |
2 |
1 |
3 |
2 |
1 |
0 |
||||||||||||||
25 |
3 |
0 |
1 |
2 |
26 |
0 |
1 |
2 |
3 |
27 |
1 |
2 |
3 |
0 |
28 |
2 |
3 |
0 |
1 |
||||||||||
1 |
2 |
3 |
0 |
2 |
3 |
0 |
1 |
3 |
0 |
1 |
2 |
0 |
1 |
2 |
3 |
||||||||||||||
2 |
1 |
0 |
3 |
1 |
0 |
3 |
2 |
0 |
3 |
2 |
1 |
3 |
2 |
1 |
0 |
||||||||||||||
0 |
3 |
2 |
1 |
3 |
2 |
1 |
0 |
2 |
1 |
0 |
3 |
1 |
0 |
3 |
2 |
||||||||||||||
29 |
1 |
2 |
3 |
0 |
30 |
2 |
3 |
0 |
1 |
31 |
3 |
0 |
1 |
2 |
32 |
0 |
1 |
2 |
3 |
||||||||||
2 |
1 |
0 |
3 |
1 |
0 |
3 |
2 |
0 |
3 |
2 |
1 |
3 |
2 |
1 |
0 |
||||||||||||||
0 |
3 |
2 |
1 |
3 |
2 |
1 |
0 |
2 |
1 |
0 |
3 |
1 |
0 |
3 |
2 |
||||||||||||||
3 |
0 |
1 |
2 |
0 |
1 |
2 |
3 |
1 |
2 |
3 |
0 |
2 |
3 |
0 |
1 |
N.B.: De verdubbelaars zijn toepasbaar op de 3 basisvierkanten, maar niet op een willekeurig gekozen meest perfect 4x4 vierkant.
Je kunt het magisch 8x8 vierkant verdubbelen naar 16x16, 32x32, ...