De transformatie van een 4x4 vierkant met opeenvolgende getallen tot de 3 panmagische 4x4 basisvierkanten gaat in 5 stappen, waarbij telkens ‘geel’ en ‘rood’ met elkaar worden verwisseld:
3x panmagisch 4x4
1 |
5 |
9 |
13 |
1 |
5 |
13 |
9 |
1 |
5 |
13 |
9 |
1 |
8 |
13 |
12 |
1 |
8 |
13 |
12 |
1 |
8 |
13 |
12 |
|||||
2 |
6 |
10 |
14 |
2 |
6 |
14 |
10 |
2 |
6 |
14 |
10 |
2 |
6 |
14 |
10 |
14 |
10 |
2 |
6 |
15 |
10 |
3 |
6 |
|||||
3 |
7 |
11 |
15 |
3 |
7 |
15 |
11 |
4 |
8 |
16 |
12 |
4 |
5 |
16 |
9 |
4 |
5 |
16 |
12 |
4 |
5 |
16 |
9 |
|||||
4 |
8 |
12 |
16 |
4 |
8 |
16 |
12 |
3 |
7 |
15 |
11 |
3 |
7 |
15 |
11 |
15 |
11 |
3 |
7 |
14 |
11 |
2 |
7 |
|||||
1 |
3 |
9 |
11 |
1 |
3 |
11 |
9 |
1 |
3 |
11 |
9 |
1 |
8 |
11 |
14 |
1 |
8 |
11 |
14 |
1 |
8 |
11 |
14 |
|||||
2 |
4 |
10 |
12 |
2 |
4 |
12 |
10 |
2 |
4 |
12 |
10 |
2 |
4 |
12 |
10 |
12 |
10 |
2 |
4 |
15 |
10 |
5 |
4 |
|||||
5 |
7 |
13 |
15 |
5 |
7 |
15 |
13 |
6 |
8 |
16 |
14 |
6 |
3 |
16 |
9 |
6 |
3 |
16 |
9 |
6 |
3 |
16 |
9 |
|||||
6 |
8 |
14 |
16 |
6 |
8 |
16 |
14 |
5 |
7 |
15 |
13 |
5 |
7 |
15 |
13 |
15 |
13 |
5 |
7 |
12 |
13 |
2 |
7 |
|||||
1 |
2 |
9 |
10 |
1 |
2 |
10 |
9 |
1 |
2 |
10 |
9 |
1 |
8 |
10 |
15 |
1 |
8 |
10 |
15 |
1 |
8 |
10 |
15 |
|||||
3 |
4 |
11 |
12 |
3 |
4 |
12 |
11 |
3 |
4 |
12 |
11 |
3 |
4 |
12 |
11 |
12 |
11 |
3 |
4 |
14 |
11 |
5 |
4 |
|||||
5 |
6 |
13 |
14 |
5 |
6 |
14 |
13 |
7 |
8 |
16 |
15 |
7 |
2 |
16 |
9 |
7 |
2 |
16 |
9 |
7 |
2 |
16 |
9 |
|||||
7 |
8 |
15 |
16 |
7 |
8 |
16 |
15 |
5 |
6 |
14 |
13 |
5 |
6 |
14 |
13 |
14 |
13 |
5 |
6 |
12 |
13 |
3 |
6 |
De transformatie tot meest perfecte magische vierkanten werkt voor grootte is veelvoud van 4 vanaf 4x4 tot oneindig. Zie uitgewerkt voor 4x4, 8x8, 12x12, 16x16, 20x20, 24x24, 28x28 en 32x32