De Lozenge methode van John Horton Conway levert een oneven magisch vierkant op, waarbij alle oneven getallen zich in de (witte) 'diamant' bevinden en alle even getallen daarbuiten (in het donkere gebied). Zie voor gedetailleerde uitleg het Lozenge 5x5 magisch vierkant.
Neem 1x getal uit rijpatroon +1
4 | 5 | 6 | 7 | 8 | 0 | 1 | 2 | 3 |
3 | 4 | 5 | 6 | 7 | 8 | 0 | 1 | 2 |
2 | 3 | 4 | 5 | 6 | 7 | 8 | 0 | 1 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 0 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
8 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
7 | 8 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
6 | 7 | 8 | 0 | 1 | 2 | 3 | 4 | 5 |
5 | 6 | 7 | 8 | 0 | 1 | 2 | 3 | 4 |
+ 9x getal uit kolompatroon
5 | 6 | 7 | 8 | 0 | 1 | 2 | 3 | 4 |
6 | 7 | 8 | 0 | 1 | 2 | 3 | 4 | 5 |
7 | 8 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
8 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 0 |
2 | 3 | 4 | 5 | 6 | 7 | 8 | 0 | 1 |
3 | 4 | 5 | 6 | 7 | 8 | 0 | 1 | 2 |
4 | 5 | 6 | 7 | 8 | 0 | 1 | 2 | 3 |
= 9x9 Lozenge magisch vierkant
50 | 60 | 70 | 80 | 9 | 10 | 20 | 30 | 40 |
58 | 68 | 78 | 7 | 17 | 27 | 28 | 38 | 48 |
66 | 76 | 5 | 15 | 25 | 35 | 45 | 46 | 56 |
74 | 3 | 13 | 23 | 33 | 43 | 53 | 63 | 64 |
1 | 11 | 21 | 31 | 41 | 51 | 61 | 71 | 81 |
18 | 19 | 29 | 39 | 49 | 59 | 69 | 79 | 8 |
26 | 36 | 37 | 47 | 57 | 67 | 77 | 6 | 16 |
34 | 44 | 54 | 55 | 65 | 75 | 4 | 14 | 24 |
42 | 52 | 62 | 72 | 73 | 2 | 12 | 22 | 32 |
Deze methode werkt voor elke grootte (orde) is oneven vanaf 3x3 tot oneindig. Zie uitgewerkt voor 3x3, 5x5, 7x7, 9x9, 11x11, 13x13, 15x15, 17x17, 19x19, 21x21, 23x23, 25x25, 27x27, 29x29, 31x31