With the alternative method of Strachey we make 4 as proportional as possible 5x5 magic squares (shift) to construct the 10x10 magic square, and than we swap numbers to get the magic square valid.
To construct the 4 panmagic 5x5 squares, take the numbers 0 up to 4 as row coordinates and take the numbers 0 up to (5 x 4 -/- 1 = ) 19 as column coordinates.
5x column coordinate + 1x row coordinate + 1 = panmagic 5x5 square
250 |
250 |
250 |
250 |
250 |
||||||||||||||
250 |
250 |
|||||||||||||||||
0 |
5 |
10 |
15 |
17 |
0 |
1 |
2 |
3 |
4 |
1 |
27 |
53 |
79 |
90 |
250 |
|||
10 |
15 |
17 |
0 |
5 |
3 |
4 |
0 |
1 |
2 |
54 |
80 |
86 |
2 |
28 |
250 |
|||
17 |
0 |
5 |
10 |
15 |
1 |
2 |
3 |
4 |
0 |
87 |
3 |
29 |
55 |
76 |
250 |
|||
5 |
10 |
15 |
17 |
0 |
4 |
0 |
1 |
2 |
3 |
30 |
51 |
77 |
88 |
4 |
250 |
|||
15 |
17 |
0 |
5 |
10 |
2 |
3 |
4 |
0 |
1 |
78 |
89 |
5 |
26 |
52 |
250 |
|||
250 |
250 |
250 |
250 |
250 |
||||||||||||||
250 |
250 |
|||||||||||||||||
1 |
4 |
9 |
14 |
19 |
0 |
1 |
2 |
3 |
4 |
6 |
22 |
48 |
74 |
100 |
250 |
|||
9 |
14 |
19 |
1 |
4 |
3 |
4 |
0 |
1 |
2 |
49 |
75 |
96 |
7 |
23 |
250 |
|||
19 |
1 |
4 |
9 |
14 |
1 |
2 |
3 |
4 |
0 |
97 |
8 |
24 |
50 |
71 |
250 |
|||
4 |
9 |
14 |
19 |
1 |
4 |
0 |
1 |
2 |
3 |
25 |
46 |
72 |
98 |
9 |
250 |
|||
14 |
19 |
1 |
4 |
9 |
2 |
3 |
4 |
0 |
1 |
73 |
99 |
10 |
21 |
47 |
250 |
|||
255 |
255 |
255 |
255 |
255 |
||||||||||||||
255 |
255 |
|||||||||||||||||
2 |
6 |
11 |
13 |
16 |
0 |
1 |
2 |
3 |
4 |
11 |
32 |
58 |
69 |
85 |
255 |
|||
11 |
13 |
16 |
2 |
6 |
3 |
4 |
0 |
1 |
2 |
59 |
70 |
81 |
12 |
33 |
255 |
|||
16 |
2 |
6 |
11 |
13 |
1 |
2 |
3 |
4 |
0 |
82 |
13 |
34 |
60 |
66 |
255 |
|||
6 |
11 |
13 |
16 |
2 |
4 |
0 |
1 |
2 |
3 |
35 |
56 |
67 |
83 |
14 |
255 |
|||
13 |
16 |
2 |
6 |
11 |
2 |
3 |
4 |
0 |
1 |
68 |
84 |
15 |
31 |
57 |
255 |
|||
255 |
255 |
255 |
255 |
255 |
||||||||||||||
255 |
255 |
|||||||||||||||||
3 |
7 |
8 |
12 |
18 |
0 |
1 |
2 |
3 |
4 |
16 |
37 |
43 |
64 |
95 |
255 |
|||
8 |
12 |
18 |
3 |
7 |
3 |
4 |
0 |
1 |
2 |
44 |
65 |
91 |
17 |
38 |
255 |
|||
18 |
3 |
7 |
8 |
12 |
1 |
2 |
3 |
4 |
0 |
92 |
18 |
39 |
45 |
61 |
255 |
|||
7 |
8 |
12 |
18 |
3 |
4 |
0 |
1 |
2 |
3 |
40 |
41 |
62 |
93 |
19 |
255 |
|||
12 |
18 |
3 |
7 |
8 |
2 |
3 |
4 |
0 |
1 |
63 |
94 |
20 |
36 |
42 |
255 |
Combine the 4 panmagic 5x5 squares.
(Semi) Magic 10x10 square to be corrected
505 |
505 |
505 |
505 |
505 |
505 |
505 |
505 |
505 |
505 |
|||
500 |
510 |
|||||||||||
505 |
1 |
27 |
53 |
79 |
90 |
11 |
32 |
58 |
69 |
85 |
||
505 |
54 |
80 |
86 |
2 |
28 |
59 |
70 |
81 |
12 |
33 |
||
505 |
87 |
3 |
29 |
55 |
76 |
82 |
13 |
34 |
60 |
66 |
||
505 |
30 |
51 |
77 |
88 |
4 |
35 |
56 |
67 |
83 |
14 |
||
505 |
78 |
89 |
5 |
26 |
52 |
68 |
84 |
15 |
31 |
57 |
||
505 |
16 |
37 |
43 |
64 |
95 |
6 |
22 |
48 |
74 |
100 |
||
505 |
44 |
65 |
91 |
17 |
38 |
49 |
75 |
96 |
7 |
23 |
||
505 |
92 |
18 |
39 |
45 |
61 |
97 |
8 |
24 |
50 |
71 |
||
505 |
40 |
41 |
62 |
93 |
19 |
25 |
46 |
72 |
98 |
9 |
||
505 |
63 |
94 |
20 |
36 |
42 |
73 |
99 |
10 |
21 |
47 |
Swap 2x two numbers to get a valid 10x10 magic square.
10x10 magic square
505 |
505 |
505 |
505 |
505 |
505 |
505 |
505 |
505 |
505 |
|||
505 |
505 |
|||||||||||
505 |
1 |
27 |
53 |
79 |
90 |
11 |
32 |
58 |
69 |
85 |
||
505 |
54 |
80 |
81 |
2 |
28 |
59 |
70 |
86 |
12 |
33 |
||
505 |
87 |
3 |
34 |
55 |
76 |
82 |
13 |
29 |
60 |
66 |
||
505 |
30 |
51 |
77 |
88 |
4 |
35 |
56 |
67 |
83 |
14 |
||
505 |
78 |
89 |
5 |
26 |
52 |
68 |
84 |
15 |
31 |
57 |
||
505 |
16 |
37 |
43 |
64 |
95 |
6 |
22 |
48 |
74 |
100 |
||
505 |
44 |
65 |
91 |
17 |
38 |
49 |
75 |
96 |
7 |
23 |
||
505 |
92 |
18 |
39 |
45 |
61 |
97 |
8 |
24 |
50 |
71 |
||
505 |
40 |
41 |
62 |
93 |
19 |
25 |
46 |
72 |
98 |
9 |
||
505 |
63 |
94 |
20 |
36 |
42 |
73 |
99 |
10 |
21 |
47 |
Use the alternative method of Strachey to construct magic squares of order is double odd. See 6x6, 10x10, 14x14, 18x18, 22x22, 26x26 en 30x30