Method of Strachey

 

Take a 5x5 magic square and construct the second, third and fourth 5x5 magic square by adding (5 x 5 =) 25, (2 x 25 = ) 50 respectively (3 x 25 = ) 75 to all numbers of the first 5x5 magic square. Put the first square in the top left corner, put the second square in the bottom right corner, put the third square in the top right corner and put the fourth square in the bottom left corner.

 

 

23

12

1

20

9

73

62

51

70

59

4

18

7

21

15

54

68

57

71

65

10

24

13

2

16

60

74

63

52

66

11

5

19

8

22

61

55

69

58

72

17

6

25

14

3

67

56

75

64

53

98

87

76

95

84

48

37

26

45

34

79

93

82

96

90

29

43

32

46

40

85

99

88

77

91

35

49

38

27

41

86

80

94

83

97

36

30

44

33

47

92

81

100

89

78

42

31

50

39

28

 

 

The columns and the diagonals give already the magic sum. To get the right sum in the rows, you must swap numbers, as follows. We split the 5x5 square in the top left corner and the 5x5 square in the bottom left corner in 'quarters' (marked by the blue numbers). The (yellow marked) ‘quarters’ top left and (red marked) 'quarters' bottom left of the 5x5 square in the top left corner must be swapped with the ‘quarters’ top left and bottom left of the 5x5 square in the bottom left corner. Also the (green marked) blue numbers on the border between the two 'quarters’  from the second cell up to the crossing point must be swapped. Finally the (orange marked) numbers of the top half of the last column(s) must be swapped with the numbers of the bottom half of the last column(s). Because the numbers of the first two columns must be swapped, the numbers of the last (2 – 1 = ) 1 column(s) must be swapped. See below the result.

 

 

10x10 magic square

98

87

1

20

9

73

62

51

70

34

79

93

7

21

15

54

68

57

71

40

10

99

88

2

16

60

74

63

52

41

86

80

19

8

22

61

55

69

58

47

92

81

25

14

3

67

56

75

64

28

23

12

76

95

84

48

37

26

45

59

4

18

82

96

90

29

43

32

46

65

85

24

13

77

91

35

49

38

27

66

11

5

94

83

97

36

30

44

33

72

17

6

100

89

78

42

31

50

39

53

 

 

ór

 

 

1x number from grid with 4x 5x5 magic square

1

7

13

19

25

1

7

13

19

25

14

20

21

2

8

14

20

21

2

8

22

3

9

15

16

22

3

9

15

16

10

11

17

23

4

10

11

17

23

4

18

24

5

6

12

18

24

5

6

12

1

7

13

19

25

1

7

13

19

25

14

20

21

2

8

14

20

21

2

8

22

3

9

15

16

22

3

9

15

16

10

11

17

23

4

10

11

17

23

4

18

24

5

6

12

18

24

5

6

12

 

 

+25x number from grid with numbers 0, 1, 2 and 3

0

0

0

3

3

2

2

2

2

1

0

3

3

0

0

2

2

2

2

1

0

3

3

0

0

2

2

2

2

1

0

3

3

0

0

2

2

2

2

1

0

0

0

3

3

2

2

2

2

1

3

3

3

0

0

1

1

1

1

2

3

0

0

3

3

1

1

1

1

2

3

0

0

3

3

1

1

1

1

2

3

0

0

3

3

1

1

1

1

2

3

3

3

0

0

1

1

1

1

2

 

 

= 10x10 magic square

1

7

13

94

100

51

57

63

69

50

14

95

96

2

8

64

70

71

52

33

22

78

84

15

16

72

53

59

65

41

10

86

92

23

4

60

61

67

73

29

18

24

5

81

87

68

74

55

56

37

76

82

88

19

25

26

32

38

44

75

89

20

21

77

83

39

45

46

27

58

97

3

9

90

91

47

28

34

40

66

85

11

17

98

79

35

36

42

48

54

93

99

80

6

12

43

49

30

31

62

 


Use the method of Strachey to construct magic squares of order is double odd. See 6x610x1014x1418x1822x2226x26 en 30x30

 

Download
10x10, Method of Strachey.xls
Microsoft Excel werkblad 43.0 KB