Reflecting grids (1)

 

Construct a 10x10 magic square with a row grid and a column grid, which is a reflection of the row grid.

 

 

1x number from row grid +1

0 9 9 9 9 0 0 9 0 0
1 1 8 8 8 8 8 1 1 1
7 7 2 7 2 2 7 2 7 2
6 6 6 3 3 3 3 3 6 6
5 5 5 5 4 4 4 4 4 5
4 4 4 4 5 5 5 5 5 4
3 3 3 6 6 6 6 6 3 3
2 2 7 2 7 7 2 7 2 7
8 8 1 1 1 1 1 8 8 8
9 0 0 0 0 9 9 0 9 9

 

 

+10x number from column grid

0 1 7 6 5 4 3 2 8 9
9 1 7 6 5 4 3 2 8 0
9 8 2 6 5 4 3 7 1 0
9 8 7 3 5 4 6 2 1 0
9 8 2 3 4 5 6 7 1 0
0 8 2 3 4 5 6 7 1 9
0 8 7 3 4 5 6 2 1 9
9 1 2 3 4 5 6 7 8 0
0 1 7 6 4 5 3 2 8 9
0 1 2 6 5 4 3 7 8 9

 

 

= 10x10 magic square

1 20 80 70 60 41 31 30 81 91
92 12 79 69 59 49 39 22 82 2
98 88 23 68 53 43 38 73 18 3
97 87 77 34 54 44 64 24 17 7
96 86 26 36 45 55 65 75 15 6
5 85 25 35 46 56 66 76 16 95
4 84 74 37 47 57 67 27 14 94
93 13 28 33 48 58 63 78 83 8
9 19 72 62 42 52 32 29 89 99
10 11 21 61 51 50 40 71 90 100

 

 

Take care that all the numbers from 1 up to 100 are in the magic square.

 

 

Use the method of reflecting grids (1) to construct magic squares of order is double odd. See 6x610x1014x1418x1822x2226x26 en 30x30

 

Download
10x10, reflection.xls
Microsoft Excel werkblad 43.5 KB