Construct a row grid and a column grid. Use the middle numbers 1 up to 9 to produce the ultra magic 9x9 inlay. Puzzle the border.
1x number from row grid +1
5 | 1 | 2 | 3 | 4 | 6 | 7 | 8 | 9 | 10 | 0 |
10 | 1 | 5 | 9 | 6 | 7 | 2 | 8 | 3 | 4 | 0 |
0 | 8 | 3 | 4 | 1 | 5 | 9 | 6 | 7 | 2 | 10 |
10 | 6 | 7 | 2 | 8 | 3 | 4 | 1 | 5 | 9 | 0 |
10 | 1 | 5 | 9 | 6 | 7 | 2 | 8 | 3 | 4 | 0 |
0 | 8 | 3 | 4 | 1 | 5 | 9 | 6 | 7 | 2 | 10 |
0 | 6 | 7 | 2 | 8 | 3 | 4 | 1 | 5 | 9 | 10 |
10 | 1 | 5 | 9 | 6 | 7 | 2 | 8 | 3 | 4 | 0 |
0 | 8 | 3 | 4 | 1 | 5 | 9 | 6 | 7 | 2 | 10 |
0 | 6 | 7 | 2 | 8 | 3 | 4 | 1 | 5 | 9 | 10 |
10 | 9 | 8 | 7 | 6 | 4 | 3 | 2 | 1 | 0 | 5 |
+11x number from column grid
0 | 0 | 0 | 10 | 10 | 10 | 10 | 0 | 0 | 10 | 5 |
1 | 1 | 8 | 6 | 1 | 8 | 6 | 1 | 8 | 6 | 9 |
7 | 5 | 3 | 7 | 5 | 3 | 7 | 5 | 3 | 7 | 3 |
2 | 9 | 4 | 2 | 9 | 4 | 2 | 9 | 4 | 2 | 8 |
8 | 6 | 1 | 8 | 6 | 1 | 8 | 6 | 1 | 8 | 2 |
3 | 7 | 5 | 3 | 7 | 5 | 3 | 7 | 5 | 3 | 7 |
6 | 2 | 9 | 4 | 2 | 9 | 4 | 2 | 9 | 4 | 4 |
9 | 8 | 6 | 1 | 8 | 6 | 1 | 8 | 6 | 1 | 1 |
10 | 3 | 7 | 5 | 3 | 7 | 5 | 3 | 7 | 5 | 0 |
4 | 4 | 2 | 9 | 4 | 2 | 9 | 4 | 2 | 9 | 6 |
5 | 10 | 10 | 0 | 0 | 0 | 0 | 10 | 10 | 0 | 10 |
= ultra magic 9x9 in 11x11 magic square
6 | 2 | 3 | 114 | 115 | 117 | 118 | 9 | 10 | 121 | 56 |
22 | 13 | 94 | 76 | 18 | 96 | 69 | 20 | 92 | 71 | 100 |
78 | 64 | 37 | 82 | 57 | 39 | 87 | 62 | 41 | 80 | 44 |
33 | 106 | 52 | 25 | 108 | 48 | 27 | 101 | 50 | 32 | 89 |
99 | 68 | 17 | 98 | 73 | 19 | 91 | 75 | 15 | 93 | 23 |
34 | 86 | 59 | 38 | 79 | 61 | 43 | 84 | 63 | 36 | 88 |
67 | 29 | 107 | 47 | 31 | 103 | 49 | 24 | 105 | 54 | 55 |
110 | 90 | 72 | 21 | 95 | 74 | 14 | 97 | 70 | 16 | 12 |
111 | 42 | 81 | 60 | 35 | 83 | 65 | 40 | 85 | 58 | 11 |
45 | 51 | 30 | 102 | 53 | 26 | 104 | 46 | 28 | 109 | 77 |
66 | 120 | 119 | 8 | 7 | 5 | 4 | 113 | 112 | 1 | 116 |
Use this method to construct inlaid squares of odd order from 5x5 to infinity.
See 5x5, 7x7, 9x9, 11x11, 13x13, 15x15, 17x17, 19x19, 21x21, 23x23, 25x25, 27x27, 29x29 & 31x31