See for detailed explanation, webpage pan 4x4 in 6x6
Take a 10x10 magic square and add 22 to all numbers to get the 10x10 inlay and construct the 12x12 border.
The final result is:
10x10 in 12x12 magic square
13 |
2 |
5 |
16 |
20 |
141 |
138 |
135 |
133 |
127 |
126 |
14 |
142 |
39 |
64 |
121 |
46 |
23 |
98 |
30 |
105 |
112 |
87 |
3 |
137 |
89 |
114 |
96 |
71 |
73 |
48 |
80 |
55 |
62 |
37 |
8 |
136 |
45 |
95 |
52 |
102 |
29 |
104 |
86 |
36 |
63 |
113 |
9 |
130 |
120 |
70 |
27 |
77 |
79 |
54 |
111 |
61 |
88 |
38 |
15 |
124 |
76 |
26 |
28 |
53 |
110 |
85 |
42 |
117 |
69 |
119 |
21 |
22 |
51 |
101 |
103 |
78 |
60 |
35 |
92 |
67 |
94 |
44 |
123 |
17 |
32 |
82 |
59 |
109 |
116 |
41 |
93 |
43 |
50 |
100 |
128 |
11 |
107 |
57 |
34 |
84 |
66 |
91 |
118 |
68 |
75 |
25 |
134 |
6 |
108 |
83 |
115 |
40 |
72 |
122 |
24 |
74 |
31 |
56 |
139 |
1 |
58 |
33 |
90 |
65 |
97 |
47 |
49 |
99 |
81 |
106 |
144 |
131 |
143 |
140 |
129 |
125 |
4 |
7 |
10 |
12 |
18 |
19 |
132 |
Use this method to construct inlaid magic squares of even order. See 6x6, 8x8, 10x10, 12x12, 14x14, 16x16, 18x18, 20x20, 22x22, 24x24, 26x26, 28x28, 30x30 & 32x32