How to construct as perfect as possible magic squares which are an odd multiple of 4?First we analyze how the basic key method works for the construction of the 16x16 magic square. Than we investigate the possibilities to use a basic key to construct a
12x12 magic square.
Why does the basic key of the 16x16 magic square work?
How is it possible that the basic key leads to most perfect (Franklin pan)magic squares for each order is a multiple of 8.
1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16 = 136.
(1st) sum = sum = 34 = 1/4 x 136
1 |
2 |
16 |
15 |
16 |
15 |
1 |
2 |
So, in the 16x16 magic square each 1/4 row/column gives 1/4 of the magic sum.
(2nd) sum = sum = 34 = 1/4 x 136
1 |
2 |
16 |
15 |
16 |
15 |
1 |
2 |
So, in the 16x16 magic square each 1/4 diagonal gives 1/4 of the magic sum.
(3rd) Between opposite combinations must be an odd number of cells (opposite combinations must not be arranged next to each other).
1 |
2 |
16 |
15 |
16 |
15 |
1 |
2 |
So the first grid can be reflected to construct the second grid and if you combine the first grid with the second grid you get all the numbers from 1 up to 256 in the magic square.
How to get the right basic key to construct a 12x12 magic square?
For magic squares which are an odd multiple of 4 no basic key exists to comply to all three above mentioned conditions. You have to make a choice.
[Option a]
(1st) sum = sum = 26 = 1/3 x 78
1 |
10 |
11 |
4 |
8 |
6 |
5 |
7 |
12 |
3 |
2 |
9 |
12 |
3 |
2 |
9 |
5 |
7 |
8 |
6 |
1 |
10 |
11 |
4 |
So each 1/3 row/column gives 1/3 of the magic sum (but 1/2 row/column gives not 1/2 of the magic sum).
(2nd) sum = sum = 39 = 1/2 x 78
1 |
10 |
11 |
4 |
8 |
6 |
12 |
3 |
2 |
9 |
5 |
7 |
So each 1/2 diagonal gives 1/2 of the magic sum (and each [[parallel] bended diagonal gives the magic sum = Franklin feauture).
(3rd) Between each opposite combination is and odd number of cells, so the first grid can be reflected to construct the second grid and if
you combine the first grid with the second grid you get all the numbers from 1 up to 144 in the magic square.
1x number from first grid
1 |
10 |
11 |
4 |
8 |
6 |
5 |
7 |
12 |
3 |
2 |
9 |
12 |
3 |
2 |
9 |
5 |
7 |
8 |
6 |
1 |
10 |
11 |
4 |
1 |
10 |
11 |
4 |
8 |
6 |
5 |
7 |
12 |
3 |
2 |
9 |
12 |
3 |
2 |
9 |
5 |
7 |
8 |
6 |
1 |
10 |
11 |
4 |
1 |
10 |
11 |
4 |
8 |
6 |
5 |
7 |
12 |
3 |
2 |
9 |
12 |
3 |
2 |
9 |
5 |
7 |
8 |
6 |
1 |
10 |
11 |
4 |
1 |
10 |
11 |
4 |
8 |
6 |
5 |
7 |
12 |
3 |
2 |
9 |
12 |
3 |
2 |
9 |
5 |
7 |
8 |
6 |
1 |
10 |
11 |
4 |
1 |
10 |
11 |
4 |
8 |
6 |
5 |
7 |
12 |
3 |
2 |
9 |
12 |
3 |
2 |
9 |
5 |
7 |
8 |
6 |
1 |
10 |
11 |
4 |
1 |
10 |
11 |
4 |
8 |
6 |
5 |
7 |
12 |
3 |
2 |
9 |
12 |
3 |
2 |
9 |
5 |
7 |
8 |
6 |
1 |
10 |
11 |
4 |
+ 12 x (number -/- 1) from second grid
9 |
4 |
9 |
4 |
9 |
4 |
9 |
4 |
9 |
4 |
9 |
4 |
2 |
11 |
2 |
11 |
2 |
11 |
2 |
11 |
2 |
11 |
2 |
11 |
3 |
10 |
3 |
10 |
3 |
10 |
3 |
10 |
3 |
10 |
3 |
10 |
12 |
1 |
12 |
1 |
12 |
1 |
12 |
1 |
12 |
1 |
12 |
1 |
7 |
6 |
7 |
6 |
7 |
6 |
7 |
6 |
7 |
6 |
7 |
6 |
5 |
8 |
5 |
8 |
5 |
8 |
5 |
8 |
5 |
8 |
5 |
8 |
6 |
7 |
6 |
7 |
6 |
7 |
6 |
7 |
6 |
7 |
6 |
7 |
8 |
5 |
8 |
5 |
8 |
5 |
8 |
5 |
8 |
5 |
8 |
5 |
4 |
9 |
4 |
9 |
4 |
9 |
4 |
9 |
4 |
9 |
4 |
9 |
11 |
2 |
11 |
2 |
11 |
2 |
11 |
2 |
11 |
2 |
11 |
2 |
10 |
3 |
10 |
3 |
10 |
3 |
10 |
3 |
10 |
3 |
10 |
3 |
1 |
12 |
1 |
12 |
1 |
12 |
1 |
12 |
1 |
12 |
1 |
12 |
= 12x12 magic square (option a)
97 |
46 |
107 |
40 |
104 |
42 |
101 |
43 |
108 |
39 |
98 |
45 |
24 |
123 |
14 |
129 |
17 |
127 |
20 |
126 |
13 |
130 |
23 |
124 |
25 |
118 |
35 |
112 |
32 |
114 |
29 |
115 |
36 |
111 |
26 |
117 |
144 |
3 |
134 |
9 |
137 |
7 |
140 |
6 |
133 |
10 |
143 |
4 |
73 |
70 |
83 |
64 |
80 |
66 |
77 |
67 |
84 |
63 |
74 |
69 |
60 |
87 |
50 |
93 |
53 |
91 |
56 |
90 |
49 |
94 |
59 |
88 |
61 |
82 |
71 |
76 |
68 |
78 |
65 |
79 |
72 |
75 |
62 |
81 |
96 |
51 |
86 |
57 |
89 |
55 |
92 |
54 |
85 |
58 |
95 |
52 |
37 |
106 |
47 |
100 |
44 |
102 |
41 |
103 |
48 |
99 |
38 |
105 |
132 |
15 |
122 |
21 |
125 |
19 |
128 |
18 |
121 |
22 |
131 |
16 |
109 |
34 |
119 |
28 |
116 |
30 |
113 |
31 |
120 |
27 |
110 |
33 |
12 |
135 |
2 |
141 |
5 |
139 |
8 |
138 |
1 |
142 |
11 |
136 |
[option b]
(1st) sum = sum = 39 = 1/2 x 78
1 |
11 |
10 |
2 |
7 |
8 |
12 |
4 |
3 |
9 |
6 |
5 |
12 |
2 |
3 |
11 |
6 |
5 |
1 |
9 |
10 |
4 |
7 |
8 |
So each 1/2 row/column gives 1/2 of the magic sum.
(2nd) The sum of the half winding rows is not 39, but the sum of the whole winding rows is 78.
So each diagonal gives the magic sum (but each 1/2 diagonal gives not 1/2 of the magic sum and each [parallel] bended diagonals gives not the magic sum).
(3rd) Between each opposite combination is and odd number of cells, so the first grid can be reflected to construct the second grid and if you combine the first grid with the second grid you get all the numbers from 1 up to 144 in the magic square.
1x number from first grid
1 |
11 |
10 |
2 |
7 |
8 |
12 |
4 |
3 |
9 |
6 |
5 |
12 |
2 |
3 |
11 |
6 |
5 |
1 |
9 |
10 |
4 |
7 |
8 |
1 |
11 |
10 |
2 |
7 |
8 |
12 |
4 |
3 |
9 |
6 |
5 |
12 |
2 |
3 |
11 |
6 |
5 |
1 |
9 |
10 |
4 |
7 |
8 |
1 |
11 |
10 |
2 |
7 |
8 |
12 |
4 |
3 |
9 |
6 |
5 |
12 |
2 |
3 |
11 |
6 |
5 |
1 |
9 |
10 |
4 |
7 |
8 |
1 |
11 |
10 |
2 |
7 |
8 |
12 |
4 |
3 |
9 |
6 |
5 |
12 |
2 |
3 |
11 |
6 |
5 |
1 |
9 |
10 |
4 |
7 |
8 |
1 |
11 |
10 |
2 |
7 |
8 |
12 |
4 |
3 |
9 |
6 |
5 |
12 |
2 |
3 |
11 |
6 |
5 |
1 |
9 |
10 |
4 |
7 |
8 |
1 |
11 |
10 |
2 |
7 |
8 |
12 |
4 |
3 |
9 |
6 |
5 |
12 |
2 |
3 |
11 |
6 |
5 |
1 |
9 |
10 |
4 |
7 |
8 |
+ 12x (number -/- 1) from second grid
5 |
8 |
5 |
8 |
5 |
8 |
5 |
8 |
5 |
8 |
5 |
8 |
6 |
7 |
6 |
7 |
6 |
7 |
6 |
7 |
6 |
7 |
6 |
7 |
9 |
4 |
9 |
4 |
9 |
4 |
9 |
4 |
9 |
4 |
9 |
4 |
3 |
10 |
3 |
10 |
3 |
10 |
3 |
10 |
3 |
10 |
3 |
10 |
4 |
9 |
4 |
9 |
4 |
9 |
4 |
9 |
4 |
9 |
4 |
9 |
12 |
1 |
12 |
1 |
12 |
1 |
12 |
1 |
12 |
1 |
12 |
1 |
8 |
5 |
8 |
5 |
8 |
5 |
8 |
5 |
8 |
5 |
8 |
5 |
7 |
6 |
7 |
6 |
7 |
6 |
7 |
6 |
7 |
6 |
7 |
6 |
2 |
11 |
2 |
11 |
2 |
11 |
2 |
11 |
2 |
11 |
2 |
11 |
10 |
3 |
10 |
3 |
10 |
3 |
10 |
3 |
10 |
3 |
10 |
3 |
11 |
2 |
11 |
2 |
11 |
2 |
11 |
2 |
11 |
2 |
11 |
2 |
1 |
12 |
1 |
12 |
1 |
12 |
1 |
12 |
1 |
12 |
1 |
12 |
= 12x12 magic square (option b)
49 |
95 |
58 |
86 |
55 |
92 |
60 |
88 |
51 |
93 |
54 |
89 |
72 |
74 |
63 |
83 |
66 |
77 |
61 |
81 |
70 |
76 |
67 |
80 |
97 |
47 |
106 |
38 |
103 |
44 |
108 |
40 |
99 |
45 |
102 |
41 |
36 |
110 |
27 |
119 |
30 |
113 |
25 |
117 |
34 |
112 |
31 |
116 |
37 |
107 |
46 |
98 |
43 |
104 |
48 |
100 |
39 |
105 |
42 |
101 |
144 |
2 |
135 |
11 |
138 |
5 |
133 |
9 |
142 |
4 |
139 |
8 |
85 |
59 |
94 |
50 |
91 |
56 |
96 |
52 |
87 |
57 |
90 |
53 |
84 |
62 |
75 |
71 |
78 |
65 |
73 |
69 |
82 |
64 |
79 |
68 |
13 |
131 |
22 |
122 |
19 |
128 |
24 |
124 |
15 |
129 |
18 |
125 |
120 |
26 |
111 |
35 |
114 |
29 |
109 |
33 |
118 |
28 |
115 |
32 |
121 |
23 |
130 |
14 |
127 |
20 |
132 |
16 |
123 |
21 |
126 |
17 |
12 |
134 |
3 |
143 |
6 |
137 |
1 |
141 |
10 |
136 |
7 |
140 |
Ultra panmagic 12x12 square
It is also possible to construct an ultra panmagic 12x12 square in which each 4x4 sub-square has the following symmetric structure:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Two numbers of the same colour sums to (the lowest + highest number of the magic 12x12 square = 1 + 144 =) 145.
1x number |
|
|
|
|
|
|
|
|
|
||
12 |
2 |
2 |
12 |
5 |
6 |
6 |
5 |
10 |
4 |
4 |
10 |
1 |
11 |
11 |
1 |
8 |
7 |
7 |
8 |
3 |
9 |
9 |
3 |
12 |
2 |
2 |
12 |
5 |
6 |
6 |
5 |
10 |
4 |
4 |
10 |
1 |
11 |
11 |
1 |
8 |
7 |
7 |
8 |
3 |
9 |
9 |
3 |
12 |
2 |
2 |
12 |
5 |
6 |
6 |
5 |
10 |
4 |
4 |
10 |
1 |
11 |
11 |
1 |
8 |
7 |
7 |
8 |
3 |
9 |
9 |
3 |
12 |
2 |
2 |
12 |
5 |
6 |
6 |
5 |
10 |
4 |
4 |
10 |
1 |
11 |
11 |
1 |
8 |
7 |
7 |
8 |
3 |
9 |
9 |
3 |
12 |
2 |
2 |
12 |
5 |
6 |
6 |
5 |
10 |
4 |
4 |
10 |
1 |
11 |
11 |
1 |
8 |
7 |
7 |
8 |
3 |
9 |
9 |
3 |
12 |
2 |
2 |
12 |
5 |
6 |
6 |
5 |
10 |
4 |
4 |
10 |
1 |
11 |
11 |
1 |
8 |
7 |
7 |
8 |
3 |
9 |
9 |
3 |
+ 12 x (number -/- 1) |
|
|
|
|
|
|
|
||||
10 |
3 |
10 |
3 |
10 |
3 |
10 |
3 |
10 |
3 |
10 |
3 |
4 |
9 |
4 |
9 |
4 |
9 |
4 |
9 |
4 |
9 |
4 |
9 |
4 |
9 |
4 |
9 |
4 |
9 |
4 |
9 |
4 |
9 |
4 |
9 |
10 |
3 |
10 |
3 |
10 |
3 |
10 |
3 |
10 |
3 |
10 |
3 |
5 |
8 |
5 |
8 |
5 |
8 |
5 |
8 |
5 |
8 |
5 |
8 |
6 |
7 |
6 |
7 |
6 |
7 |
6 |
7 |
6 |
7 |
6 |
7 |
6 |
7 |
6 |
7 |
6 |
7 |
6 |
7 |
6 |
7 |
6 |
7 |
5 |
8 |
5 |
8 |
5 |
8 |
5 |
8 |
5 |
8 |
5 |
8 |
12 |
1 |
12 |
1 |
12 |
1 |
12 |
1 |
12 |
1 |
12 |
1 |
2 |
11 |
2 |
11 |
2 |
11 |
2 |
11 |
2 |
11 |
2 |
11 |
2 |
11 |
2 |
11 |
2 |
11 |
2 |
11 |
2 |
11 |
2 |
11 |
12 |
1 |
12 |
1 |
12 |
1 |
12 |
1 |
12 |
1 |
12 |
1 |
|
|
|
|
|
|||||||
120 |
26 |
110 |
36 |
113 |
30 |
114 |
29 |
118 |
28 |
112 |
34 |
37 |
107 |
47 |
97 |
44 |
103 |
43 |
104 |
39 |
105 |
45 |
99 |
48 |
98 |
38 |
108 |
41 |
102 |
42 |
101 |
46 |
100 |
40 |
106 |
109 |
35 |
119 |
25 |
116 |
31 |
115 |
32 |
111 |
33 |
117 |
27 |
60 |
86 |
50 |
96 |
53 |
90 |
54 |
89 |
58 |
88 |
52 |
94 |
61 |
83 |
71 |
73 |
68 |
79 |
67 |
80 |
63 |
81 |
69 |
75 |
72 |
74 |
62 |
84 |
65 |
78 |
66 |
77 |
70 |
76 |
64 |
82 |
49 |
95 |
59 |
85 |
56 |
91 |
55 |
92 |
51 |
93 |
57 |
87 |
144 |
2 |
134 |
12 |
137 |
6 |
138 |
5 |
142 |
4 |
136 |
10 |
13 |
131 |
23 |
121 |
20 |
127 |
19 |
128 |
15 |
129 |
21 |
123 |
24 |
122 |
14 |
132 |
17 |
126 |
18 |
125 |
22 |
124 |
16 |
130 |
133 |
11 |
143 |
1 |
140 |
7 |
139 |
8 |
135 |
9 |
141 |
3 |
Notify that each 1/2 row/column gives 1/2 of the magic sum, each 1/3 diagonal gives 1/3 of the magic sum, the 12x12 magic square is panmagic, 2x2 compact and symmetric within each 4x4 sub-square.
Try the following basic key:
12 |
12 |
2 |
2 |
10 |
10 |
4 |
4 |
5 |
5 |
6 |
6 |
1 |
1 |
11 |
11 |
3 |
3 |
9 |
9 |
8 |
8 |
7 |
7 |
You get an ultra panmagic 12x12 square in which each 4x4 sub-square has the following structure:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
To construct an ultra panmagic square, which is symmetric within each 6x6 sub-square (and 2x2 compact), use the following basic key:
12 |
2 |
10 |
10 |
2 |
12 |
4 |
6 |
5 |
5 |
6 |
4 |
1 |
11 |
3 |
3 |
11 |
1 |
9 |
7 |
8 |
8 |
7 |
9 |
To construct an ultra panmagic square, which is symmetric (and 2x2 compact) and each 1/2 row/column gives 1/2 of the magic sum, use the following basic key:
12 |
2 |
10 |
4 |
5 |
6 |
6 |
5 |
4 |
10 |
2 |
12 |
1 |
11 |
3 |
9 |
8 |
7 |
7 |
8 |
9 |
3 |
11 |
1 |
You can use this key to construct magic squares which are a multiple of 4 from 8x8 to infinity. See 8x8, 12x12, 16x16, 20x20, 24x24, 28x28 and 32x32