René Chrétien had noticed the 15x15 composite (4) magic square and showed me it is possible to use the method to construct magic squares of even orders as well.
Construct the 12x12 magic square by using 9 proportional 4x4 panmagic squares. The squares are proportional because all 4 panmagic 4x4 squares have the same magic sum of (1/3 x 870 = ) 290. We use the basic key method (4x4) to produce the panmagic 4x4 squares. As row coordinates don't use 0 up to 3 but use 0 up to (9x4 -/- 1 = ) 35 instead. Take care that the sum of the row coordinates in each 4x4 square is the same (0+17+18+35 = 1+16+19+34 = 2+15+20+33 = ... = 8+9+26+27 = 70) to get proportional squares.
1x row coordinate +36x column coordinate + 1 = panmagic 4x4 square
0 | 17 | 18 | 35 | 0 | 3 | 1 | 2 | 1 | 126 | 55 | 108 | ||
18 | 35 | 0 | 17 | 3 | 0 | 2 | 1 | 127 | 36 | 73 | 54 | ||
17 | 0 | 35 | 18 | 2 | 1 | 3 | 0 | 90 | 37 | 144 | 19 | ||
35 | 18 | 17 | 0 | 1 | 2 | 0 | 3 | 72 | 91 | 18 | 109 | ||
1 | 16 | 19 | 34 | 0 | 3 | 1 | 2 | 2 | 125 | 56 | 107 | ||
19 | 34 | 1 | 16 | 3 | 0 | 2 | 1 | 128 | 35 | 74 | 53 | ||
16 | 1 | 34 | 19 | 2 | 1 | 3 | 0 | 89 | 38 | 143 | 20 | ||
34 | 19 | 16 | 1 | 1 | 2 | 0 | 3 | 71 | 92 | 17 | 110 | ||
2 | 15 | 20 | 33 | 0 | 3 | 1 | 2 | 3 | 124 | 57 | 106 | ||
20 | 33 | 2 | 15 | 3 | 0 | 2 | 1 | 129 | 34 | 75 | 52 | ||
15 | 2 | 33 | 20 | 2 | 1 | 3 | 0 | 88 | 39 | 142 | 21 | ||
33 | 20 | 15 | 2 | 1 | 2 | 0 | 3 | 70 | 93 | 16 | 111 | ||
3 | 14 | 21 | 32 | 0 | 3 | 1 | 2 | 4 | 123 | 58 | 105 | ||
21 | 32 | 3 | 14 | 3 | 0 | 2 | 1 | 130 | 33 | 76 | 51 | ||
14 | 3 | 32 | 21 | 2 | 1 | 3 | 0 | 87 | 40 | 141 | 22 | ||
32 | 21 | 14 | 3 | 1 | 2 | 0 | 3 | 69 | 94 | 15 | 112 | ||
4 | 13 | 22 | 31 | 0 | 3 | 1 | 2 | 5 | 122 | 59 | 104 | ||
22 | 31 | 4 | 13 | 3 | 0 | 2 | 1 | 131 | 32 | 77 | 50 | ||
13 | 4 | 31 | 22 | 2 | 1 | 3 | 0 | 86 | 41 | 140 | 23 | ||
31 | 22 | 13 | 4 | 1 | 2 | 0 | 3 | 68 | 95 | 14 | 113 | ||
5 | 12 | 23 | 30 | 0 | 3 | 1 | 2 | 6 | 121 | 60 | 103 | ||
23 | 30 | 5 | 12 | 3 | 0 | 2 | 1 | 132 | 31 | 78 | 49 | ||
12 | 5 | 30 | 23 | 2 | 1 | 3 | 0 | 85 | 42 | 139 | 24 | ||
30 | 23 | 12 | 5 | 1 | 2 | 0 | 3 | 67 | 96 | 13 | 114 | ||
6 | 11 | 24 | 29 | 0 | 3 | 1 | 2 | 7 | 120 | 61 | 102 | ||
24 | 29 | 6 | 11 | 3 | 0 | 2 | 1 | 133 | 30 | 79 | 48 | ||
11 | 6 | 29 | 24 | 2 | 1 | 3 | 0 | 84 | 43 | 138 | 25 | ||
29 | 24 | 11 | 6 | 1 | 2 | 0 | 3 | 66 | 97 | 12 | 115 | ||
7 | 10 | 25 | 28 | 0 | 3 | 1 | 2 | 8 | 119 | 62 | 101 | ||
25 | 28 | 7 | 10 | 3 | 0 | 2 | 1 | 134 | 29 | 80 | 47 | ||
10 | 7 | 28 | 25 | 2 | 1 | 3 | 0 | 83 | 44 | 137 | 26 | ||
28 | 25 | 10 | 7 | 1 | 2 | 0 | 3 | 65 | 98 | 11 | 116 | ||
8 | 9 | 26 | 27 | 0 | 3 | 1 | 2 | 9 | 118 | 63 | 100 | ||
26 | 27 | 8 | 9 | 3 | 0 | 2 | 1 | 135 | 28 | 81 | 46 | ||
9 | 8 | 27 | 26 | 2 | 1 | 3 | 0 | 82 | 45 | 136 | 27 | ||
27 | 26 | 9 | 8 | 1 | 2 | 0 | 3 | 64 | 99 | 10 | 117 |
Put the 9 panmagic 4x4 squares together.
12x12 magisch vierkant
1 | 126 | 55 | 108 | 2 | 125 | 56 | 107 | 3 | 124 | 57 | 106 |
127 | 36 | 73 | 54 | 128 | 35 | 74 | 53 | 129 | 34 | 75 | 52 |
90 | 37 | 144 | 19 | 89 | 38 | 143 | 20 | 88 | 39 | 142 | 21 |
72 | 91 | 18 | 109 | 71 | 92 | 17 | 110 | 70 | 93 | 16 | 111 |
4 | 123 | 58 | 105 | 5 | 122 | 59 | 104 | 6 | 121 | 60 | 103 |
130 | 33 | 76 | 51 | 131 | 32 | 77 | 50 | 132 | 31 | 78 | 49 |
87 | 40 | 141 | 22 | 86 | 41 | 140 | 23 | 85 | 42 | 139 | 24 |
69 | 94 | 15 | 112 | 68 | 95 | 14 | 113 | 67 | 96 | 13 | 114 |
7 | 120 | 61 | 102 | 8 | 119 | 62 | 101 | 9 | 118 | 63 | 100 |
133 | 30 | 79 | 48 | 134 | 29 | 80 | 47 | 135 | 28 | 81 | 46 |
84 | 43 | 138 | 25 | 83 | 44 | 137 | 26 | 82 | 45 | 136 | 27 |
66 | 97 | 12 | 115 | 65 | 98 | 11 | 116 | 64 | 99 | 10 | 117 |
The 12x12 magic square is not fully 2x2 compact. Use the Khajuraho method to swap numbers to get a perfect result.
Most perfect 12x12 square
3 | 126 | 55 | 106 | 2 | 125 | 56 | 107 | 1 | 124 | 57 | 108 |
127 | 34 | 75 | 54 | 128 | 35 | 74 | 53 | 129 | 36 | 73 | 52 |
90 | 39 | 142 | 19 | 89 | 38 | 143 | 20 | 88 | 37 | 144 | 21 |
70 | 91 | 18 | 111 | 71 | 92 | 17 | 110 | 72 | 93 | 16 | 109 |
6 | 123 | 58 | 103 | 5 | 122 | 59 | 104 | 4 | 121 | 60 | 105 |
130 | 31 | 78 | 51 | 131 | 32 | 77 | 50 | 132 | 33 | 76 | 49 |
87 | 42 | 139 | 22 | 86 | 41 | 140 | 23 | 85 | 40 | 141 | 24 |
67 | 94 | 15 | 114 | 68 | 95 | 14 | 113 | 69 | 96 | 13 | 112 |
9 | 120 | 61 | 100 | 8 | 119 | 62 | 101 | 7 | 118 | 63 | 102 |
133 | 28 | 81 | 48 | 134 | 29 | 80 | 47 | 135 | 30 | 79 | 46 |
84 | 45 | 136 | 25 | 83 | 44 | 137 | 26 | 82 | 43 | 138 | 27 |
64 | 97 | 12 | 117 | 65 | 98 | 11 | 116 | 66 | 99 | 10 | 115 |
The 12x12 magic square is panmagic, (fully) 2x2 compact and each 1/3 row/column/diagonal gives 1/3 of the magic sum.
I have used composite method, proportional (1) to construct
8x8, 9x9, 12x12a, 12x12b, 15x15a, 15x15b, 16x16a, 16x16b, 18x18, 20x20a, 20x20b, 21x21a, 21x21b, 24x24a, 24x24b, 24x24c, 27x27a, 27x27b, 28x28a, 28x28b, 30x30a, 30x30b,32x32a, 32x32b and 32x32c