Construct a most perfect magic 12x12 square by using a grid with 3x3 the same 4x4 Sudoku and a fixed grid:
Take 1x number from first grid + 1
2 |
1 |
3 |
0 |
2 |
1 |
3 |
0 |
2 |
1 |
3 |
0 |
3 |
0 |
2 |
1 |
3 |
0 |
2 |
1 |
3 |
0 |
2 |
1 |
0 |
3 |
1 |
2 |
0 |
3 |
1 |
2 |
0 |
3 |
1 |
2 |
1 |
2 |
0 |
3 |
1 |
2 |
0 |
3 |
1 |
2 |
0 |
3 |
2 |
1 |
3 |
0 |
2 |
1 |
3 |
0 |
2 |
1 |
3 |
0 |
3 |
0 |
2 |
1 |
3 |
0 |
2 |
1 |
3 |
0 |
2 |
1 |
0 |
3 |
1 |
2 |
0 |
3 |
1 |
2 |
0 |
3 |
1 |
2 |
1 |
2 |
0 |
3 |
1 |
2 |
0 |
3 |
1 |
2 |
0 |
3 |
2 |
1 |
3 |
0 |
2 |
1 |
3 |
0 |
2 |
1 |
3 |
0 |
3 |
0 |
2 |
1 |
3 |
0 |
2 |
1 |
3 |
0 |
2 |
1 |
0 |
3 |
1 |
2 |
0 |
3 |
1 |
2 |
0 |
3 |
1 |
2 |
1 |
2 |
0 |
3 |
1 |
2 |
0 |
3 |
1 |
2 |
0 |
3 |
+4x number from second grid
35 |
5 |
30 |
0 |
34 |
4 |
31 |
1 |
33 |
3 |
32 |
2 |
0 |
30 |
5 |
35 |
1 |
31 |
4 |
34 |
2 |
32 |
3 |
33 |
5 |
35 |
0 |
30 |
4 |
34 |
1 |
31 |
3 |
33 |
2 |
32 |
30 |
0 |
35 |
5 |
31 |
1 |
34 |
4 |
32 |
2 |
33 |
3 |
29 |
11 |
24 |
6 |
28 |
10 |
25 |
7 |
27 |
9 |
26 |
8 |
6 |
24 |
11 |
29 |
7 |
25 |
10 |
28 |
8 |
26 |
9 |
27 |
11 |
29 |
6 |
24 |
10 |
28 |
7 |
25 |
9 |
27 |
8 |
26 |
24 |
6 |
29 |
11 |
25 |
7 |
28 |
10 |
26 |
8 |
27 |
9 |
23 |
17 |
18 |
12 |
22 |
16 |
19 |
13 |
21 |
15 |
20 |
14 |
12 |
18 |
17 |
23 |
13 |
19 |
16 |
22 |
14 |
20 |
15 |
21 |
17 |
23 |
12 |
18 |
16 |
22 |
13 |
19 |
15 |
21 |
14 |
20 |
18 |
12 |
23 |
17 |
19 |
13 |
22 |
16 |
20 |
14 |
21 |
15 |
= Most perfect (Franklin pan)magic 12x12 square
143 |
22 |
124 |
1 |
139 |
18 |
128 |
5 |
135 |
14 |
132 |
9 |
4 |
121 |
23 |
142 |
8 |
125 |
19 |
138 |
12 |
129 |
15 |
134 |
21 |
144 |
2 |
123 |
17 |
140 |
6 |
127 |
13 |
136 |
10 |
131 |
122 |
3 |
141 |
24 |
126 |
7 |
137 |
20 |
130 |
11 |
133 |
16 |
119 |
46 |
100 |
25 |
115 |
42 |
104 |
29 |
111 |
38 |
108 |
33 |
28 |
97 |
47 |
118 |
32 |
101 |
43 |
114 |
36 |
105 |
39 |
110 |
45 |
120 |
26 |
99 |
41 |
116 |
30 |
103 |
37 |
112 |
34 |
107 |
98 |
27 |
117 |
48 |
102 |
31 |
113 |
44 |
106 |
35 |
109 |
40 |
95 |
70 |
76 |
49 |
91 |
66 |
80 |
53 |
87 |
62 |
84 |
57 |
52 |
73 |
71 |
94 |
56 |
77 |
67 |
90 |
60 |
81 |
63 |
86 |
69 |
96 |
50 |
75 |
65 |
92 |
54 |
79 |
61 |
88 |
58 |
83 |
74 |
51 |
93 |
72 |
78 |
55 |
89 |
68 |
82 |
59 |
85 |
64 |
This magic 12x12 square is panmagic, 2x2 compact and each 1/3 row/column/diagonal gives 1/3 of the magic sum.
Use this method to construct most perfect (Franklin pan)magic squares which are a multiple of 4 from 8x8 to infinite. See
8x8, 12x12, 16x16, 20x20, 24x24, 28x28 and 32x32