Paulus Gerdes introduced the Liki magic square (see http://plus.maths.org/content/new-designs-africa). He showed that it is possible to transform a square with consecutive numbers into a magic square by swapping half of the numbers symmetrically. You can use this method to construct magic squares which are a multiple of 4 (= 4x4, 8x8, 12x12, 16x16, ... magic square).
Paulus Gerdes constructed the following symmetric 8x8 magic square:
8x8 square with consecutive numbers
232 |
240 |
248 |
256 |
264 |
272 |
280 |
288 |
|||
260 |
260 |
|||||||||
36 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
||
100 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
||
164 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
||
228 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
||
292 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
||
356 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
||
420 |
49 |
50 |
51 |
52 |
53 |
54 |
55 |
56 |
||
484 |
57 |
58 |
59 |
60 |
61 |
62 |
63 |
64 |
Symmetric 8x8 magic square
260 |
260 |
260 |
260 |
260 |
260 |
260 |
260 |
|||
260 |
260 |
|||||||||
260 |
1 |
63 |
3 |
61 |
60 |
6 |
58 |
8 |
||
260 |
56 |
55 |
11 |
12 |
13 |
14 |
50 |
49 |
||
260 |
17 |
18 |
46 |
45 |
44 |
43 |
23 |
24 |
||
260 |
40 |
26 |
38 |
28 |
29 |
35 |
31 |
33 |
||
260 |
32 |
34 |
30 |
36 |
37 |
27 |
39 |
25 |
||
260 |
41 |
42 |
22 |
21 |
20 |
19 |
47 |
48 |
||
260 |
16 |
15 |
51 |
52 |
53 |
54 |
10 |
9 |
||
260 |
57 |
7 |
59 |
5 |
4 |
62 |
2 |
64 |
I used Paulus' method to construct a symmetric 12x12 magic square:
12x12 square with consecutive numbers
804 |
816 |
828 |
840 |
852 |
864 |
876 |
888 |
900 |
912 |
924 |
936 |
|||
870 |
870 |
|||||||||||||
78 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
||
222 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
||
366 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
||
510 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
||
654 |
49 |
50 |
51 |
52 |
53 |
54 |
55 |
56 |
57 |
58 |
59 |
60 |
||
798 |
61 |
62 |
63 |
64 |
65 |
66 |
67 |
68 |
69 |
70 |
71 |
72 |
||
942 |
73 |
74 |
75 |
76 |
77 |
78 |
79 |
80 |
81 |
82 |
83 |
84 |
||
1086 |
85 |
86 |
87 |
88 |
89 |
90 |
91 |
92 |
93 |
94 |
95 |
96 |
||
1230 |
97 |
98 |
99 |
100 |
101 |
102 |
103 |
104 |
105 |
106 |
107 |
108 |
||
1374 |
109 |
110 |
111 |
112 |
113 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
||
1518 |
121 |
122 |
123 |
124 |
125 |
126 |
127 |
128 |
129 |
130 |
131 |
132 |
||
1662 |
133 |
134 |
135 |
136 |
137 |
138 |
139 |
140 |
141 |
142 |
143 |
144 |
Symmetric
12x12 magic square
870 |
870 |
870 |
870 |
870 |
870 |
870 |
870 |
870 |
870 |
870 |
870 |
|||
870 |
870 |
|||||||||||||
870 |
1 |
143 |
3 |
141 |
5 |
139 |
138 |
8 |
136 |
10 |
134 |
12 |
||
870 |
132 |
131 |
15 |
129 |
17 |
18 |
19 |
20 |
124 |
22 |
122 |
121 |
||
870 |
25 |
26 |
27 |
117 |
116 |
115 |
114 |
113 |
112 |
34 |
35 |
36 |
||
870 |
108 |
107 |
106 |
40 |
41 |
42 |
43 |
44 |
45 |
99 |
98 |
97 |
||
870 |
49 |
50 |
94 |
52 |
92 |
91 |
90 |
89 |
57 |
87 |
59 |
60 |
||
870 |
84 |
62 |
82 |
64 |
80 |
66 |
67 |
77 |
69 |
75 |
71 |
73 |
||
870 |
72 |
74 |
70 |
76 |
68 |
78 |
79 |
65 |
81 |
63 |
83 |
61 |
||
870 |
85 |
86 |
58 |
88 |
56 |
55 |
54 |
53 |
93 |
51 |
95 |
96 |
||
870 |
48 |
47 |
46 |
100 |
101 |
102 |
103 |
104 |
105 |
39 |
38 |
37 |
||
870 |
109 |
110 |
111 |
33 |
32 |
31 |
30 |
29 |
28 |
118 |
119 |
120 |
||
870 |
24 |
23 |
123 |
21 |
125 |
126 |
127 |
128 |
16 |
130 |
14 |
13 |
||
870 |
133 |
11 |
135 |
9 |
137 |
7 |
6 |
140 |
4 |
142 |
2 |
144 |
Use the same symmetric transformation in each 4x4 sub-square and you get the following 12x12 magic square:
76 | 80 | 84 | 88 | 92 | 96 | 100 | 104 | 108 | 112 | 116 | 120 | |||||
268 | 272 | 276 | 280 | 284 | 288 | 292 | 296 | 300 | 304 | 308 | 312 | |||||
460 | 464 | 468 | 472 | 476 | 480 | 484 | 488 | 492 | 496 | 500 | 504 | |||||
870 | 870 | |||||||||||||||
10 | 26 | 42 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ||
58 | 74 | 90 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | ||
106 | 122 | 138 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | ||
154 | 170 | 186 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | ||
202 | 218 | 234 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | ||
250 | 266 | 282 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | ||
298 | 314 | 330 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | ||
346 | 362 | 378 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | ||
394 | 410 | 426 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | ||
442 | 458 | 474 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | ||
490 | 506 | 522 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | ||
538 | 554 | 570 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 |
290 | 290 | 290 | 290 | 290 | 290 | 290 | 290 | 290 | 290 | 290 | 290 | |||||
290 | 290 | 290 | 290 | 290 | 290 | 290 | 290 | 290 | 290 | 290 | 290 | |||||
290 | 290 | 290 | 290 | 290 | 290 | 290 | 290 | 290 | 290 | 290 | 290 | |||||
870 | 870 | |||||||||||||||
290 | 290 | 290 | 1 | 143 | 142 | 4 | 5 | 139 | 138 | 8 | 9 | 135 | 134 | 12 | ||
290 | 290 | 290 | 132 | 14 | 15 | 129 | 128 | 18 | 19 | 125 | 124 | 22 | 23 | 121 | ||
290 | 290 | 290 | 120 | 26 | 27 | 117 | 116 | 30 | 31 | 113 | 112 | 34 | 35 | 109 | ||
290 | 290 | 290 | 37 | 107 | 106 | 40 | 41 | 103 | 102 | 44 | 45 | 99 | 98 | 48 | ||
290 | 290 | 290 | 49 | 95 | 94 | 52 | 53 | 91 | 90 | 56 | 57 | 87 | 86 | 60 | ||
290 | 290 | 290 | 84 | 62 | 63 | 81 | 80 | 66 | 67 | 77 | 76 | 70 | 71 | 73 | ||
290 | 290 | 290 | 72 | 74 | 75 | 69 | 68 | 78 | 79 | 65 | 64 | 82 | 83 | 61 | ||
290 | 290 | 290 | 85 | 59 | 58 | 88 | 89 | 55 | 54 | 92 | 93 | 51 | 50 | 96 | ||
290 | 290 | 290 | 97 | 47 | 46 | 100 | 101 | 43 | 42 | 104 | 105 | 39 | 38 | 108 | ||
290 | 290 | 290 | 36 | 110 | 111 | 33 | 32 | 114 | 115 | 29 | 28 | 118 | 119 | 25 | ||
290 | 290 | 290 | 24 | 122 | 123 | 21 | 20 | 126 | 127 | 17 | 16 | 130 | 131 | 13 | ||
290 | 290 | 290 | 133 | 11 | 10 | 136 | 137 | 7 | 6 | 140 | 141 | 3 | 2 | 144 |
This 12x12 magic square is not only symmetric, but each 1/3 row/column gives 1/3 of the magic sum.
If you change the starting position of the 12x12 square with consecutive numbers, than you get the following (ultra) magic 12x12 square:
56 | 60 | 76 | 72 | 88 | 92 | 108 | 104 | 120 | 124 | 140 | 136 | |||||||
248 | 252 | 268 | 264 | 280 | 284 | 300 | 296 | 312 | 316 | 332 | 328 | |||||||
440 | 444 | 460 | 456 | 472 | 476 | 492 | 488 | 504 | 508 | 524 | 520 | |||||||
870 | 870 | |||||||||||||||||
14 | 46 | 78 | 1 | 2 | 6 | 5 | 9 | 10 | 14 | 13 | 17 | 18 | 22 | 21 | ||||
22 | 54 | 86 | 3 | 4 | 8 | 7 | 11 | 12 | 16 | 15 | 19 | 20 | 24 | 23 | 870 | 870 | ||
118 | 150 | 182 | 27 | 28 | 32 | 31 | 35 | 36 | 40 | 39 | 43 | 44 | 48 | 47 | 870 | 870 | ||
110 | 142 | 174 | 25 | 26 | 30 | 29 | 33 | 34 | 38 | 37 | 41 | 42 | 46 | 45 | 870 | 870 | ||
206 | 238 | 270 | 49 | 50 | 54 | 53 | 57 | 58 | 62 | 61 | 65 | 66 | 70 | 69 | 870 | 870 | ||
214 | 246 | 278 | 51 | 52 | 56 | 55 | 59 | 60 | 64 | 63 | 67 | 68 | 72 | 71 | 870 | 870 | ||
310 | 342 | 374 | 75 | 76 | 80 | 79 | 83 | 84 | 88 | 87 | 91 | 92 | 96 | 95 | 870 | 870 | ||
302 | 334 | 366 | 73 | 74 | 78 | 77 | 81 | 82 | 86 | 85 | 89 | 90 | 94 | 93 | 870 | 870 | ||
398 | 430 | 462 | 97 | 98 | 102 | 101 | 105 | 106 | 110 | 109 | 113 | 114 | 118 | 117 | 870 | 870 | ||
406 | 438 | 470 | 99 | 100 | 104 | 103 | 107 | 108 | 112 | 111 | 115 | 116 | 120 | 119 | 870 | 870 | ||
502 | 534 | 566 | 123 | 124 | 128 | 127 | 131 | 132 | 136 | 135 | 139 | 140 | 144 | 143 | 870 | 870 | ||
494 | 526 | 558 | 121 | 122 | 126 | 125 | 129 | 130 | 134 | 133 | 137 | 138 | 142 | 141 | 870 | 870 | ||
290 | 290 | 290 | 290 | 290 | 290 | 290 | 290 | 290 | 290 | 290 | 290 | |||||||
290 | 290 | 290 | 290 | 290 | 290 | 290 | 290 | 290 | 290 | 290 | 290 | |||||||
290 | 290 | 290 | 290 | 290 | 290 | 290 | 290 | 290 | 290 | 290 | 290 | |||||||
870 | 870 | |||||||||||||||||
290 | 290 | 290 | 1 | 143 | 6 | 140 | 9 | 135 | 14 | 132 | 17 | 127 | 22 | 124 | ||||
290 | 290 | 290 | 142 | 4 | 137 | 7 | 134 | 12 | 129 | 15 | 126 | 20 | 121 | 23 | 870 | 870 | ||
290 | 290 | 290 | 27 | 117 | 32 | 114 | 35 | 109 | 40 | 106 | 43 | 101 | 48 | 98 | 870 | 870 | ||
290 | 290 | 290 | 120 | 26 | 115 | 29 | 112 | 34 | 107 | 37 | 104 | 42 | 99 | 45 | 870 | 870 | ||
290 | 290 | 290 | 49 | 95 | 54 | 92 | 57 | 87 | 62 | 84 | 65 | 79 | 70 | 76 | 870 | 870 | ||
290 | 290 | 290 | 94 | 52 | 89 | 55 | 86 | 60 | 81 | 63 | 78 | 68 | 73 | 71 | 870 | 870 | ||
290 | 290 | 290 | 75 | 69 | 80 | 66 | 83 | 61 | 88 | 58 | 91 | 53 | 96 | 50 | 870 | 870 | ||
290 | 290 | 290 | 72 | 74 | 67 | 77 | 64 | 82 | 59 | 85 | 56 | 90 | 51 | 93 | 870 | 870 | ||
290 | 290 | 290 | 97 | 47 | 102 | 44 | 105 | 39 | 110 | 36 | 113 | 31 | 118 | 28 | 870 | 870 | ||
290 | 290 | 290 | 46 | 100 | 41 | 103 | 38 | 108 | 33 | 111 | 30 | 116 | 25 | 119 | 870 | 870 | ||
290 | 290 | 290 | 123 | 21 | 128 | 18 | 131 | 13 | 136 | 10 | 139 | 5 | 144 | 2 | 870 | 870 | ||
290 | 290 | 290 | 24 | 122 | 19 | 125 | 16 | 130 | 11 | 133 | 8 | 138 | 3 | 141 | 870 | 870 |
This magic 12x12 square is panmagic, 2x2 compact, each 1/3 row/column gives 1/3 of the magic sum, but this 12x12 magic square is not symmetric.
Use this method to construct magic squares of order is multiple of 4 from 4x4 to infinity. See 4x4, 8x8, 12x12, 16x16, 20x20, 24x24, 28x28, 32x32