See for detailed explanation, webpage pan 4x4 in 6x6
Take a most perfect 12x12 magic square and add 26 to all numbers to get the 12x12 inlay and construct the 14x14 border.
The final result is:
Most perfect 12x12 in 14x14 magic square
24 |
2 |
4 |
10 |
16 |
19 |
190 |
189 |
188 |
185 |
177 |
176 |
174 |
25 |
194 |
27 |
169 |
37 |
159 |
34 |
165 |
33 |
166 |
29 |
167 |
35 |
161 |
3 |
192 |
158 |
40 |
148 |
50 |
151 |
44 |
152 |
43 |
156 |
42 |
150 |
48 |
5 |
184 |
147 |
49 |
157 |
39 |
154 |
45 |
153 |
46 |
149 |
47 |
155 |
41 |
13 |
182 |
38 |
160 |
28 |
170 |
31 |
164 |
32 |
163 |
36 |
162 |
30 |
168 |
15 |
180 |
111 |
85 |
121 |
75 |
118 |
81 |
117 |
82 |
113 |
83 |
119 |
77 |
17 |
175 |
110 |
88 |
100 |
98 |
103 |
92 |
104 |
91 |
108 |
90 |
102 |
96 |
22 |
26 |
99 |
97 |
109 |
87 |
106 |
93 |
105 |
94 |
101 |
95 |
107 |
89 |
171 |
18 |
122 |
76 |
112 |
86 |
115 |
80 |
116 |
79 |
120 |
78 |
114 |
84 |
179 |
14 |
51 |
145 |
61 |
135 |
58 |
141 |
57 |
142 |
53 |
143 |
59 |
137 |
183 |
11 |
134 |
64 |
124 |
74 |
127 |
68 |
128 |
67 |
132 |
66 |
126 |
72 |
186 |
6 |
123 |
73 |
133 |
63 |
130 |
69 |
129 |
70 |
125 |
71 |
131 |
65 |
191 |
1 |
62 |
136 |
52 |
146 |
55 |
140 |
56 |
139 |
60 |
138 |
54 |
144 |
196 |
172 |
195 |
193 |
187 |
181 |
178 |
7 |
8 |
9 |
12 |
20 |
21 |
23 |
173 |
Use this method to construct inlaid magic squares of even order. See 6x6, 8x8, 10x10, 12x12, 14x14, 16x16, 18x18, 20x20, 22x22, 24x24, 26x26, 28x28, 30x30 & 32x32