Use 9 proportional panmagic 5x5 squares (shift) to construct a 15x15 magic square. Proportional means that all 9 panmagic 5x5 squares have the same magic sum of (1/3 x 1695 = ) 565. We use the shift method to construct the panmagic 5x5 squares. Only as column coordinates we do not use the numbers 0 up to 4 but 0 up to (9x5 -/- 1 = ) 44 and choose the column coordinates smart so we get 9 proportional panmagic 5x5 squares.
5x column coordinate + 1x row coordinate + 1 = panmagic 5x5 square
0 | 15 | 21 | 30 | 44 | 0 | 1 | 2 | 3 | 4 | 1 | 77 | 108 | 154 | 225 | ||
21 | 30 | 44 | 0 | 15 | 3 | 4 | 0 | 1 | 2 | 109 | 155 | 221 | 2 | 78 | ||
44 | 0 | 15 | 21 | 30 | 1 | 2 | 3 | 4 | 0 | 222 | 3 | 79 | 110 | 151 | ||
15 | 21 | 30 | 44 | 0 | 4 | 0 | 1 | 2 | 3 | 80 | 106 | 152 | 223 | 4 | ||
30 | 44 | 0 | 15 | 21 | 2 | 3 | 4 | 0 | 1 | 153 | 224 | 5 | 76 | 107 | ||
1 | 16 | 22 | 33 | 38 | 0 | 1 | 2 | 3 | 4 | 6 | 82 | 113 | 169 | 195 | ||
22 | 33 | 38 | 1 | 16 | 3 | 4 | 0 | 1 | 2 | 114 | 170 | 191 | 7 | 83 | ||
38 | 1 | 16 | 22 | 33 | 1 | 2 | 3 | 4 | 0 | 192 | 8 | 84 | 115 | 166 | ||
16 | 22 | 33 | 38 | 1 | 4 | 0 | 1 | 2 | 3 | 85 | 111 | 167 | 193 | 9 | ||
33 | 38 | 1 | 16 | 22 | 2 | 3 | 4 | 0 | 1 | 168 | 194 | 10 | 81 | 112 | ||
2 | 17 | 23 | 27 | 41 | 0 | 1 | 2 | 3 | 4 | 11 | 87 | 118 | 139 | 210 | ||
23 | 27 | 41 | 2 | 17 | 3 | 4 | 0 | 1 | 2 | 119 | 140 | 206 | 12 | 88 | ||
41 | 2 | 17 | 23 | 27 | 1 | 2 | 3 | 4 | 0 | 207 | 13 | 89 | 120 | 136 | ||
17 | 23 | 27 | 41 | 2 | 4 | 0 | 1 | 2 | 3 | 90 | 116 | 137 | 208 | 14 | ||
27 | 41 | 2 | 17 | 23 | 2 | 3 | 4 | 0 | 1 | 138 | 209 | 15 | 86 | 117 | ||
3 | 9 | 24 | 31 | 43 | 0 | 1 | 2 | 3 | 4 | 16 | 47 | 123 | 159 | 220 | ||
24 | 31 | 43 | 3 | 9 | 3 | 4 | 0 | 1 | 2 | 124 | 160 | 216 | 17 | 48 | ||
43 | 3 | 9 | 24 | 31 | 1 | 2 | 3 | 4 | 0 | 217 | 18 | 49 | 125 | 156 | ||
9 | 24 | 31 | 43 | 3 | 4 | 0 | 1 | 2 | 3 | 50 | 121 | 157 | 218 | 19 | ||
31 | 43 | 3 | 9 | 24 | 2 | 3 | 4 | 0 | 1 | 158 | 219 | 20 | 46 | 122 | ||
4 | 10 | 25 | 34 | 37 | 0 | 1 | 2 | 3 | 4 | 21 | 52 | 128 | 174 | 190 | ||
25 | 34 | 37 | 4 | 10 | 3 | 4 | 0 | 1 | 2 | 129 | 175 | 186 | 22 | 53 | ||
37 | 4 | 10 | 25 | 34 | 1 | 2 | 3 | 4 | 0 | 187 | 23 | 54 | 130 | 171 | ||
10 | 25 | 34 | 37 | 4 | 4 | 0 | 1 | 2 | 3 | 55 | 126 | 172 | 188 | 24 | ||
34 | 37 | 4 | 10 | 25 | 2 | 3 | 4 | 0 | 1 | 173 | 189 | 25 | 51 | 127 | ||
5 | 11 | 26 | 28 | 40 | 0 | 1 | 2 | 3 | 4 | 26 | 57 | 133 | 144 | 205 | ||
26 | 28 | 40 | 5 | 11 | 3 | 4 | 0 | 1 | 2 | 134 | 145 | 201 | 27 | 58 | ||
40 | 5 | 11 | 26 | 28 | 1 | 2 | 3 | 4 | 0 | 202 | 28 | 59 | 135 | 141 | ||
11 | 26 | 28 | 40 | 5 | 4 | 0 | 1 | 2 | 3 | 60 | 131 | 142 | 203 | 29 | ||
28 | 40 | 5 | 11 | 26 | 2 | 3 | 4 | 0 | 1 | 143 | 204 | 30 | 56 | 132 | ||
6 | 12 | 18 | 32 | 42 | 0 | 1 | 2 | 3 | 4 | 31 | 62 | 93 | 164 | 215 | ||
18 | 32 | 42 | 6 | 12 | 3 | 4 | 0 | 1 | 2 | 94 | 165 | 211 | 32 | 63 | ||
42 | 6 | 12 | 18 | 32 | 1 | 2 | 3 | 4 | 0 | 212 | 33 | 64 | 95 | 161 | ||
12 | 18 | 32 | 42 | 6 | 4 | 0 | 1 | 2 | 3 | 65 | 91 | 162 | 213 | 34 | ||
32 | 42 | 6 | 12 | 18 | 2 | 3 | 4 | 0 | 1 | 163 | 214 | 35 | 61 | 92 | ||
7 | 13 | 19 | 35 | 36 | 0 | 1 | 2 | 3 | 4 | 36 | 67 | 98 | 179 | 185 | ||
19 | 35 | 36 | 7 | 13 | 3 | 4 | 0 | 1 | 2 | 99 | 180 | 181 | 37 | 68 | ||
36 | 7 | 13 | 19 | 35 | 1 | 2 | 3 | 4 | 0 | 182 | 38 | 69 | 100 | 176 | ||
13 | 19 | 35 | 36 | 7 | 4 | 0 | 1 | 2 | 3 | 70 | 96 | 177 | 183 | 39 | ||
35 | 36 | 7 | 13 | 19 | 2 | 3 | 4 | 0 | 1 | 178 | 184 | 40 | 66 | 97 | ||
8 | 14 | 20 | 29 | 39 | 0 | 1 | 2 | 3 | 4 | 41 | 72 | 103 | 149 | 200 | ||
20 | 29 | 39 | 8 | 14 | 3 | 4 | 0 | 1 | 2 | 104 | 150 | 196 | 42 | 73 | ||
39 | 8 | 14 | 20 | 29 | 1 | 2 | 3 | 4 | 0 | 197 | 43 | 74 | 105 | 146 | ||
14 | 20 | 29 | 39 | 8 | 4 | 0 | 1 | 2 | 3 | 75 | 101 | 147 | 198 | 44 | ||
29 | 39 | 8 | 14 | 20 | 2 | 3 | 4 | 0 | 1 | 148 | 199 | 45 | 71 | 102 |
Combine the 9 panmagic 5x5 squares in sequence.
15x15 magic square consisting of 9 proportional panmagic 5x5 squares
1 | 77 | 108 | 154 | 225 | 6 | 82 | 113 | 169 | 195 | 11 | 87 | 118 | 139 | 210 |
109 | 155 | 221 | 2 | 78 | 114 | 170 | 191 | 7 | 83 | 119 | 140 | 206 | 12 | 88 |
222 | 3 | 79 | 110 | 151 | 192 | 8 | 84 | 115 | 166 | 207 | 13 | 89 | 120 | 136 |
80 | 106 | 152 | 223 | 4 | 85 | 111 | 167 | 193 | 9 | 90 | 116 | 137 | 208 | 14 |
153 | 224 | 5 | 76 | 107 | 168 | 194 | 10 | 81 | 112 | 138 | 209 | 15 | 86 | 117 |
16 | 47 | 123 | 159 | 220 | 21 | 52 | 128 | 174 | 190 | 26 | 57 | 133 | 144 | 205 |
124 | 160 | 216 | 17 | 48 | 129 | 175 | 186 | 22 | 53 | 134 | 145 | 201 | 27 | 58 |
217 | 18 | 49 | 125 | 156 | 187 | 23 | 54 | 130 | 171 | 202 | 28 | 59 | 135 | 141 |
50 | 121 | 157 | 218 | 19 | 55 | 126 | 172 | 188 | 24 | 60 | 131 | 142 | 203 | 29 |
158 | 219 | 20 | 46 | 122 | 173 | 189 | 25 | 51 | 127 | 143 | 204 | 30 | 56 | 132 |
31 | 62 | 93 | 164 | 215 | 36 | 67 | 98 | 179 | 185 | 41 | 72 | 103 | 149 | 200 |
94 | 165 | 211 | 32 | 63 | 99 | 180 | 181 | 37 | 68 | 104 | 150 | 196 | 42 | 73 |
212 | 33 | 64 | 95 | 161 | 182 | 38 | 69 | 100 | 176 | 197 | 43 | 74 | 105 | 146 |
65 | 91 | 162 | 213 | 34 | 70 | 96 | 177 | 183 | 39 | 75 | 101 | 147 | 198 | 44 |
163 | 214 | 35 | 61 | 92 | 178 | 184 | 40 | 66 | 97 | 148 | 199 | 45 | 71 | 102 |
This 15x15 magic square is panmagic, 5x5 compact and each 1/3 row/column/diagonal gives 1/3 of the magic sum.
I have used composite method, proportional (1) to construct
8x8, 9x9, 12x12a, 12x12b, 15x15a, 15x15b, 16x16a, 16x16b, 18x18, 20x20a, 20x20b, 21x21a, 21x21b, 24x24a, 24x24b, 24x24c, 27x27a, 27x27b, 28x28a, 28x28b, 30x30a, 30x30b,32x32a, 32x32b and 32x32c