With the Lozenge method of John Horton Conway you get a magic square of odd order and you find all odd numbers in the (white) 'diamond' and all even numbers outside the diamond (in the dark area). See for detailed explanation: Lozenge 5x5 magic square.
Take 1x number from row grid +1
7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 0 | 1 | 2 | 3 | 4 | 5 |
5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 0 | 1 | 2 | 3 | 4 |
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 0 | 1 | 2 | 3 |
3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 0 | 1 | 2 |
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 0 | 1 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 0 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
14 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
13 | 14 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
12 | 13 | 14 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
11 | 12 | 13 | 14 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
10 | 11 | 12 | 13 | 14 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
9 | 10 | 11 | 12 | 13 | 14 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
8 | 9 | 10 | 11 | 12 | 13 | 14 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
+ 15x number from column grid
8 | 9 | 10 | 11 | 12 | 13 | 14 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
9 | 10 | 11 | 12 | 13 | 14 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
10 | 11 | 12 | 13 | 14 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
11 | 12 | 13 | 14 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
12 | 13 | 14 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
13 | 14 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
14 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 0 |
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 0 | 1 |
3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 0 | 1 | 2 |
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 0 | 1 | 2 | 3 |
5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 0 | 1 | 2 | 3 | 4 |
6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 0 | 1 | 2 | 3 | 4 | 5 |
7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
= 15x15 Lozenge magic square
128 | 144 | 160 | 176 | 192 | 208 | 224 | 15 | 16 | 32 | 48 | 64 | 80 | 96 | 112 |
142 | 158 | 174 | 190 | 206 | 222 | 13 | 29 | 45 | 46 | 62 | 78 | 94 | 110 | 126 |
156 | 172 | 188 | 204 | 220 | 11 | 27 | 43 | 59 | 75 | 76 | 92 | 108 | 124 | 140 |
170 | 186 | 202 | 218 | 9 | 25 | 41 | 57 | 73 | 89 | 105 | 106 | 122 | 138 | 154 |
184 | 200 | 216 | 7 | 23 | 39 | 55 | 71 | 87 | 103 | 119 | 135 | 136 | 152 | 168 |
198 | 214 | 5 | 21 | 37 | 53 | 69 | 85 | 101 | 117 | 133 | 149 | 165 | 166 | 182 |
212 | 3 | 19 | 35 | 51 | 67 | 83 | 99 | 115 | 131 | 147 | 163 | 179 | 195 | 196 |
1 | 17 | 33 | 49 | 65 | 81 | 97 | 113 | 129 | 145 | 161 | 177 | 193 | 209 | 225 |
30 | 31 | 47 | 63 | 79 | 95 | 111 | 127 | 143 | 159 | 175 | 191 | 207 | 223 | 14 |
44 | 60 | 61 | 77 | 93 | 109 | 125 | 141 | 157 | 173 | 189 | 205 | 221 | 12 | 28 |
58 | 74 | 90 | 91 | 107 | 123 | 139 | 155 | 171 | 187 | 203 | 219 | 10 | 26 | 42 |
72 | 88 | 104 | 120 | 121 | 137 | 153 | 169 | 185 | 201 | 217 | 8 | 24 | 40 | 56 |
86 | 102 | 118 | 134 | 150 | 151 | 167 | 183 | 199 | 215 | 6 | 22 | 38 | 54 | 70 |
100 | 116 | 132 | 148 | 164 | 180 | 181 | 197 | 213 | 4 | 20 | 36 | 52 | 68 | 84 |
114 | 130 | 146 | 162 | 178 | 194 | 210 | 211 | 2 | 18 | 34 | 50 | 66 | 82 | 98 |
Use this method to construct magic squares of odd order (= 3x3, 5x5, 7x7, ... magic square).
See 3x3, 5x5, 7x7, 9x9, 11x11, 13x13, 15x15, 17x17, 19x19, 21x21, 23x23, 25x25, 27x27, 29x29 and 31x31