It is possible to use the shiftmethod to get a more tight structure of the panmagic 15x15 square.
You have to puzzle to get the first row. Construct a 3x5 = 5x3 matrix:
Matrix 3x5 = Matrix 5x3
0 |
9 |
12 |
21 |
0 |
9 |
12 |
21 |
||||
1 |
14 |
6 |
21 |
1 |
14 |
6 |
21 |
||||
11 |
2 |
8 |
21 |
11 |
2 |
8 |
21 |
||||
13 |
3 |
5 |
21 |
13 |
3 |
5 |
21 |
||||
10 |
7 |
4 |
21 |
10 |
7 |
4 |
21 |
||||
35 |
35 |
35 |
35 |
35 |
35 |
The magic sum of 0 up to 14 is 105. In the matrix the sum of each column is (5/15 x 105 =) 35 and the sum of each row is (3/15 x 105 =) 21 is. Put the numbers in the first row:
First row according to 3x5 matrix
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
First row according to 5x3 matrix
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
Construct row 2 up to 15 by shifting the first row each time 4 places to the left.
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
|||
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
|||||||
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
We have constructed the first grid. The second grid is a reflection (rotated by a quarter and mirrored) of the first grid. Take 15x number +1 from first grid and add 1x number from second grid to get a 15x15 panmagic square.
Take 15x number + 1
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
4 |
14 |
13 |
12 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
2 |
10 |
6 |
3 |
0 |
8 |
7 |
1 |
5 |
9 |
11 |
4 |
14 |
13 |
12 |
+ 1x number
3 |
1 |
4 |
2 |
0 |
5 |
14 |
10 |
8 |
9 |
13 |
6 |
7 |
11 |
12 |
6 |
7 |
11 |
12 |
3 |
1 |
4 |
2 |
0 |
5 |
14 |
10 |
8 |
9 |
13 |
10 |
8 |
9 |
13 |
6 |
7 |
11 |
12 |
3 |
1 |
4 |
2 |
0 |
5 |
14 |
2 |
0 |
5 |
14 |
10 |
8 |
9 |
13 |
6 |
7 |
11 |
12 |
3 |
1 |
4 |
12 |
3 |
1 |
4 |
2 |
0 |
5 |
14 |
10 |
8 |
9 |
13 |
6 |
7 |
11 |
13 |
6 |
7 |
11 |
12 |
3 |
1 |
4 |
2 |
0 |
5 |
14 |
10 |
8 |
9 |
14 |
10 |
8 |
9 |
13 |
6 |
7 |
11 |
12 |
3 |
1 |
4 |
2 |
0 |
5 |
4 |
2 |
0 |
5 |
14 |
10 |
8 |
9 |
13 |
6 |
7 |
11 |
12 |
3 |
1 |
11 |
12 |
3 |
1 |
4 |
2 |
0 |
5 |
14 |
10 |
8 |
9 |
13 |
6 |
7 |
9 |
13 |
6 |
7 |
11 |
12 |
3 |
1 |
4 |
2 |
0 |
5 |
14 |
10 |
8 |
5 |
14 |
10 |
8 |
9 |
13 |
6 |
7 |
11 |
12 |
3 |
1 |
4 |
2 |
0 |
1 |
4 |
2 |
0 |
5 |
14 |
10 |
8 |
9 |
13 |
6 |
7 |
11 |
12 |
3 |
7 |
11 |
12 |
3 |
1 |
4 |
2 |
0 |
5 |
14 |
10 |
8 |
9 |
13 |
6 |
8 |
9 |
13 |
6 |
7 |
11 |
12 |
3 |
1 |
4 |
2 |
0 |
5 |
14 |
10 |
0 |
5 |
14 |
10 |
8 |
9 |
13 |
6 |
7 |
11 |
12 |
3 |
1 |
4 |
2 |
= 15x15 panmagic square
4 |
122 |
110 |
18 |
76 |
141 |
180 |
71 |
219 |
205 |
194 |
37 |
158 |
102 |
58 |
82 |
143 |
177 |
73 |
214 |
197 |
185 |
33 |
151 |
96 |
60 |
11 |
129 |
115 |
29 |
221 |
204 |
190 |
44 |
157 |
98 |
57 |
13 |
124 |
107 |
20 |
78 |
136 |
171 |
75 |
153 |
91 |
51 |
15 |
131 |
114 |
25 |
89 |
142 |
173 |
72 |
223 |
199 |
182 |
35 |
133 |
109 |
17 |
80 |
138 |
166 |
66 |
225 |
206 |
189 |
40 |
164 |
97 |
53 |
12 |
149 |
172 |
68 |
222 |
208 |
184 |
32 |
155 |
93 |
46 |
6 |
135 |
116 |
24 |
85 |
210 |
191 |
39 |
160 |
104 |
52 |
8 |
132 |
118 |
19 |
77 |
140 |
168 |
61 |
216 |
95 |
48 |
1 |
126 |
120 |
26 |
84 |
145 |
179 |
67 |
218 |
207 |
193 |
34 |
152 |
117 |
28 |
79 |
137 |
170 |
63 |
211 |
201 |
195 |
41 |
159 |
100 |
59 |
7 |
128 |
175 |
74 |
217 |
203 |
192 |
43 |
154 |
92 |
50 |
3 |
121 |
111 |
30 |
86 |
144 |
186 |
45 |
161 |
99 |
55 |
14 |
127 |
113 |
27 |
88 |
139 |
167 |
65 |
213 |
196 |
47 |
5 |
123 |
106 |
21 |
90 |
146 |
174 |
70 |
224 |
202 |
188 |
42 |
163 |
94 |
23 |
87 |
148 |
169 |
62 |
215 |
198 |
181 |
36 |
165 |
101 |
54 |
10 |
134 |
112 |
69 |
220 |
209 |
187 |
38 |
162 |
103 |
49 |
2 |
125 |
108 |
16 |
81 |
150 |
176 |
31 |
156 |
105 |
56 |
9 |
130 |
119 |
22 |
83 |
147 |
178 |
64 |
212 |
200 |
183 |
Use the shift method to construct magic squares of odd order from 5x5 to infinity.
See 5x5, 7x7, 9x9 (1), 9x9 (2), 11x11, 13x13, 15x15 (1), 15x15 (2), 17x17, 19x19, 21x21 (1), 21x21 (2), 23x23, 25x25, 27x27 (1), 27x27 (2), 29x29 and 31x31