See for detailed explanation, webpage pan 4x4 in 6x6
Take a 14x14 magic square and add 30 to all numbers to get the 14x14 inlay and construct the 16x16 border.
The final result is:
14x14 in 16x16 magic square
25 |
2 |
5 |
9 |
13 |
20 |
26 |
251 |
250 |
245 |
241 |
240 |
235 |
234 |
230 |
30 |
254 |
214 |
211 |
154 |
151 |
94 |
91 |
34 |
31 |
198 |
195 |
138 |
135 |
78 |
75 |
3 |
249 |
212 |
213 |
152 |
153 |
92 |
93 |
32 |
33 |
196 |
197 |
136 |
137 |
76 |
77 |
8 |
246 |
50 |
47 |
186 |
183 |
126 |
123 |
66 |
63 |
202 |
199 |
170 |
167 |
110 |
107 |
11 |
242 |
48 |
49 |
184 |
185 |
124 |
125 |
64 |
65 |
200 |
201 |
168 |
169 |
108 |
109 |
15 |
239 |
82 |
79 |
218 |
215 |
158 |
155 |
98 |
95 |
38 |
35 |
174 |
171 |
142 |
139 |
18 |
236 |
80 |
81 |
216 |
217 |
156 |
157 |
96 |
97 |
36 |
37 |
172 |
173 |
140 |
141 |
21 |
233 |
114 |
111 |
54 |
51 |
190 |
187 |
127 |
130 |
70 |
67 |
206 |
203 |
146 |
143 |
24 |
1 |
112 |
113 |
52 |
53 |
188 |
189 |
128 |
129 |
68 |
69 |
204 |
205 |
144 |
145 |
256 |
4 |
115 |
118 |
83 |
86 |
219 |
222 |
162 |
159 |
99 |
102 |
39 |
42 |
175 |
178 |
253 |
10 |
116 |
117 |
84 |
85 |
220 |
221 |
160 |
161 |
100 |
101 |
40 |
41 |
176 |
177 |
247 |
14 |
147 |
150 |
87 |
90 |
55 |
58 |
191 |
194 |
131 |
134 |
71 |
74 |
207 |
210 |
243 |
19 |
149 |
148 |
89 |
88 |
57 |
56 |
193 |
192 |
133 |
132 |
73 |
72 |
209 |
208 |
238 |
28 |
179 |
182 |
119 |
122 |
59 |
62 |
223 |
226 |
163 |
166 |
103 |
106 |
43 |
46 |
229 |
29 |
181 |
180 |
121 |
120 |
61 |
60 |
225 |
224 |
165 |
164 |
105 |
104 |
45 |
44 |
228 |
227 |
255 |
252 |
248 |
244 |
237 |
231 |
6 |
7 |
12 |
16 |
17 |
22 |
23 |
27 |
232 |
Use this method to construct inlaid magic squares of even order. See 6x6, 8x8, 10x10, 12x12, 14x14, 16x16, 18x18, 20x20, 22x22, 24x24, 26x26, 28x28, 30x30 & 32x32