Use as first grid 16x the shifted versions of a 4x4 panmagic square and as second grid 16x the same or another (not shifted version of the) 4x4 panmagic square to construct a most perfect (Franklin pan)magic 16x16 square.
● In the first grid we need a panmagic 4x4 square (top left) and 15x a (different) shifted version of the panmagic 4x4 square. To get 15x shifted version of the panmagic 4x4 square we use starting positions (= coordinates) on a 2x2 carpet of the panmagic 4x4 square. We must arrange the shifted versions systematically in the 16x16 square to get a most perfect (franklin pan)magic 16x16 square.
0 |
1 |
2 |
3 |
|||||||||||
0 |
2 |
5 |
11 |
12 |
2 |
5 |
11 |
12 |
0,0 |
1,2 |
2,0 |
3,2 |
||
1 |
15 |
8 |
6 |
1 |
15 |
8 |
6 |
1 |
2,1 |
3,3 |
0,1 |
1,3 |
||
2 |
4 |
3 |
13 |
10 |
4 |
3 |
13 |
10 |
0,2 |
1,0 |
2,2 |
3,0 |
||
3 |
9 |
14 |
0 |
7 |
9 |
14 |
0 |
7 |
2,3 |
3,1 |
0,3 |
1,1 |
||
2 |
5 |
11 |
12 |
2 |
5 |
11 |
12 |
|||||||
15 |
8 |
6 |
1 |
15 |
8 |
6 |
1 |
|||||||
4 |
3 |
13 |
10 |
4 |
3 |
13 |
10 |
|||||||
9 |
14 |
0 |
7 |
9 |
14 |
0 |
7 |
● The second grid is 16x a (not shifted version of a) panmagic 4x4 square..
1x number of grid with 16x shifted version of a panmagic 4x4 square
2 |
5 |
11 |
12 |
3 |
13 |
10 |
4 |
11 |
12 |
2 |
5 |
10 |
4 |
3 |
13 |
15 |
8 |
6 |
1 |
14 |
0 |
7 |
9 |
6 |
1 |
15 |
8 |
7 |
9 |
14 |
0 |
4 |
3 |
13 |
10 |
5 |
11 |
12 |
2 |
13 |
10 |
4 |
3 |
12 |
2 |
5 |
11 |
9 |
14 |
0 |
7 |
8 |
6 |
1 |
15 |
0 |
7 |
9 |
14 |
1 |
15 |
8 |
6 |
6 |
1 |
15 |
8 |
7 |
9 |
14 |
0 |
15 |
8 |
6 |
1 |
14 |
0 |
7 |
9 |
13 |
10 |
4 |
3 |
12 |
2 |
5 |
11 |
4 |
3 |
13 |
10 |
5 |
11 |
12 |
2 |
0 |
7 |
9 |
14 |
1 |
15 |
8 |
6 |
9 |
14 |
0 |
7 |
8 |
6 |
1 |
15 |
11 |
12 |
2 |
5 |
10 |
4 |
3 |
13 |
2 |
5 |
11 |
12 |
3 |
13 |
10 |
4 |
4 |
3 |
13 |
10 |
5 |
11 |
12 |
2 |
13 |
10 |
4 |
3 |
12 |
2 |
5 |
11 |
9 |
14 |
0 |
7 |
8 |
6 |
1 |
15 |
0 |
7 |
9 |
14 |
1 |
15 |
8 |
6 |
2 |
5 |
11 |
12 |
3 |
13 |
10 |
4 |
11 |
12 |
2 |
5 |
10 |
4 |
3 |
13 |
15 |
8 |
6 |
1 |
14 |
0 |
7 |
9 |
6 |
1 |
15 |
8 |
7 |
9 |
14 |
0 |
0 |
7 |
9 |
14 |
1 |
15 |
8 |
6 |
9 |
14 |
0 |
7 |
8 |
6 |
1 |
15 |
11 |
12 |
2 |
5 |
10 |
4 |
3 |
13 |
2 |
5 |
11 |
12 |
3 |
13 |
10 |
4 |
6 |
1 |
15 |
8 |
7 |
9 |
14 |
0 |
15 |
8 |
6 |
1 |
14 |
0 |
7 |
9 |
13 |
10 |
4 |
3 |
12 |
2 |
5 |
11 |
4 |
3 |
13 |
10 |
5 |
11 |
12 |
2 |
+16x number of a (not shifted version of a) panmagic 4x4 square
2 |
5 |
11 |
12 |
2 |
5 |
11 |
12 |
2 |
5 |
11 |
12 |
2 |
5 |
11 |
12 |
15 |
8 |
6 |
1 |
15 |
8 |
6 |
1 |
15 |
8 |
6 |
1 |
15 |
8 |
6 |
1 |
4 |
3 |
13 |
10 |
4 |
3 |
13 |
10 |
4 |
3 |
13 |
10 |
4 |
3 |
13 |
10 |
9 |
14 |
0 |
7 |
9 |
14 |
0 |
7 |
9 |
14 |
0 |
7 |
9 |
14 |
0 |
7 |
2 |
5 |
11 |
12 |
2 |
5 |
11 |
12 |
2 |
5 |
11 |
12 |
2 |
5 |
11 |
12 |
15 |
8 |
6 |
1 |
15 |
8 |
6 |
1 |
15 |
8 |
6 |
1 |
15 |
8 |
6 |
1 |
4 |
3 |
13 |
10 |
4 |
3 |
13 |
10 |
4 |
3 |
13 |
10 |
4 |
3 |
13 |
10 |
9 |
14 |
0 |
7 |
9 |
14 |
0 |
7 |
9 |
14 |
0 |
7 |
9 |
14 |
0 |
7 |
2 |
5 |
11 |
12 |
2 |
5 |
11 |
12 |
2 |
5 |
11 |
12 |
2 |
5 |
11 |
12 |
15 |
8 |
6 |
1 |
15 |
8 |
6 |
1 |
15 |
8 |
6 |
1 |
15 |
8 |
6 |
1 |
4 |
3 |
13 |
10 |
4 |
3 |
13 |
10 |
4 |
3 |
13 |
10 |
4 |
3 |
13 |
10 |
9 |
14 |
0 |
7 |
9 |
14 |
0 |
7 |
9 |
14 |
0 |
7 |
9 |
14 |
0 |
7 |
2 |
5 |
11 |
12 |
2 |
5 |
11 |
12 |
2 |
5 |
11 |
12 |
2 |
5 |
11 |
12 |
15 |
8 |
6 |
1 |
15 |
8 |
6 |
1 |
15 |
8 |
6 |
1 |
15 |
8 |
6 |
1 |
4 |
3 |
13 |
10 |
4 |
3 |
13 |
10 |
4 |
3 |
13 |
10 |
4 |
3 |
13 |
10 |
9 |
14 |
0 |
7 |
9 |
14 |
0 |
7 |
9 |
14 |
0 |
7 |
9 |
14 |
0 |
7 |
= most perfect (Franklin pan)magic 16x16 square
34 |
85 |
187 |
204 |
35 |
93 |
186 |
196 |
43 |
92 |
178 |
197 |
42 |
84 |
179 |
205 |
255 |
136 |
102 |
17 |
254 |
128 |
103 |
25 |
246 |
129 |
111 |
24 |
247 |
137 |
110 |
16 |
68 |
51 |
221 |
170 |
69 |
59 |
220 |
162 |
77 |
58 |
212 |
163 |
76 |
50 |
213 |
171 |
153 |
238 |
0 |
119 |
152 |
230 |
1 |
127 |
144 |
231 |
9 |
126 |
145 |
239 |
8 |
118 |
38 |
81 |
191 |
200 |
39 |
89 |
190 |
192 |
47 |
88 |
182 |
193 |
46 |
80 |
183 |
201 |
253 |
138 |
100 |
19 |
252 |
130 |
101 |
27 |
244 |
131 |
109 |
26 |
245 |
139 |
108 |
18 |
64 |
55 |
217 |
174 |
65 |
63 |
216 |
166 |
73 |
62 |
208 |
167 |
72 |
54 |
209 |
175 |
155 |
236 |
2 |
117 |
154 |
228 |
3 |
125 |
146 |
229 |
11 |
124 |
147 |
237 |
10 |
116 |
36 |
83 |
189 |
202 |
37 |
91 |
188 |
194 |
45 |
90 |
180 |
195 |
44 |
82 |
181 |
203 |
249 |
142 |
96 |
23 |
248 |
134 |
97 |
31 |
240 |
135 |
105 |
30 |
241 |
143 |
104 |
22 |
66 |
53 |
219 |
172 |
67 |
61 |
218 |
164 |
75 |
60 |
210 |
165 |
74 |
52 |
211 |
173 |
159 |
232 |
6 |
113 |
158 |
224 |
7 |
121 |
150 |
225 |
15 |
120 |
151 |
233 |
14 |
112 |
32 |
87 |
185 |
206 |
33 |
95 |
184 |
198 |
41 |
94 |
176 |
199 |
40 |
86 |
177 |
207 |
251 |
140 |
98 |
21 |
250 |
132 |
99 |
29 |
242 |
133 |
107 |
28 |
243 |
141 |
106 |
20 |
70 |
49 |
223 |
168 |
71 |
57 |
222 |
160 |
79 |
56 |
214 |
161 |
78 |
48 |
215 |
169 |
157 |
234 |
4 |
115 |
156 |
226 |
5 |
123 |
148 |
227 |
13 |
122 |
149 |
235 |
12 |
114 |