Take 2x the same or 2 different panmagic 4x4 squares to construct a 16x16 magic square with special magic features.
The first grid consists of 8x panmagic 4x4 square and 8x inverse panmagic 4x4 square. To get the inverse square swap the highest with the lowest number, swap the second highest with the second lowest number, ... (or take instead of each number: 1 + 16 -/- number).
1 + 16 -/- number = inverse panm. 4x4
1 | 8 | 13 | 12 | 16 | 9 | 4 | 5 | ||
15 | 10 | 3 | 6 | 2 | 7 | 14 | 11 | ||
4 | 5 | 16 | 9 | 13 | 12 | 1 | 8 | ||
14 | 11 | 2 | 7 | 3 | 6 | 15 | 10 |
The second grid consists of a 4x4 'blown up' panmagic 4x4 square.
Take 1x number from grid with 8x panmagic 4x4 square and 8x inverse panmagic 4x4 square
1 | 8 | 13 | 12 | 16 | 9 | 4 | 5 | 1 | 8 | 13 | 12 | 16 | 9 | 4 | 5 |
15 | 10 | 3 | 6 | 2 | 7 | 14 | 11 | 15 | 10 | 3 | 6 | 2 | 7 | 14 | 11 |
4 | 5 | 16 | 9 | 13 | 12 | 1 | 8 | 4 | 5 | 16 | 9 | 13 | 12 | 1 | 8 |
14 | 11 | 2 | 7 | 3 | 6 | 15 | 10 | 14 | 11 | 2 | 7 | 3 | 6 | 15 | 10 |
16 | 9 | 4 | 5 | 1 | 8 | 13 | 12 | 16 | 9 | 4 | 5 | 1 | 8 | 13 | 12 |
2 | 7 | 14 | 11 | 15 | 10 | 3 | 6 | 2 | 7 | 14 | 11 | 15 | 10 | 3 | 6 |
13 | 12 | 1 | 8 | 4 | 5 | 16 | 9 | 13 | 12 | 1 | 8 | 4 | 5 | 16 | 9 |
3 | 6 | 15 | 10 | 14 | 11 | 2 | 7 | 3 | 6 | 15 | 10 | 14 | 11 | 2 | 7 |
16 | 9 | 4 | 5 | 1 | 8 | 13 | 12 | 16 | 9 | 4 | 5 | 1 | 8 | 13 | 12 |
2 | 7 | 14 | 11 | 15 | 10 | 3 | 6 | 2 | 7 | 14 | 11 | 15 | 10 | 3 | 6 |
13 | 12 | 1 | 8 | 4 | 5 | 16 | 9 | 13 | 12 | 1 | 8 | 4 | 5 | 16 | 9 |
3 | 6 | 15 | 10 | 14 | 11 | 2 | 7 | 3 | 6 | 15 | 10 | 14 | 11 | 2 | 7 |
1 | 8 | 13 | 12 | 16 | 9 | 4 | 5 | 1 | 8 | 13 | 12 | 16 | 9 | 4 | 5 |
15 | 10 | 3 | 6 | 2 | 7 | 14 | 11 | 15 | 10 | 3 | 6 | 2 | 7 | 14 | 11 |
4 | 5 | 16 | 9 | 13 | 12 | 1 | 8 | 4 | 5 | 16 | 9 | 13 | 12 | 1 | 8 |
14 | 11 | 2 | 7 | 3 | 6 | 15 | 10 | 14 | 11 | 2 | 7 | 3 | 6 | 15 | 10 |
+ (number -/- 1) x 16 from grid with 4x4 'blown up' panmagic 4x4 square
1 | 1 | 1 | 1 | 8 | 8 | 8 | 8 | 13 | 13 | 13 | 13 | 12 | 12 | 12 | 12 |
1 | 1 | 1 | 1 | 8 | 8 | 8 | 8 | 13 | 13 | 13 | 13 | 12 | 12 | 12 | 12 |
1 | 1 | 1 | 1 | 8 | 8 | 8 | 8 | 13 | 13 | 13 | 13 | 12 | 12 | 12 | 12 |
1 | 1 | 1 | 1 | 8 | 8 | 8 | 8 | 13 | 13 | 13 | 13 | 12 | 12 | 12 | 12 |
15 | 15 | 15 | 15 | 10 | 10 | 10 | 10 | 3 | 3 | 3 | 3 | 6 | 6 | 6 | 6 |
15 | 15 | 15 | 15 | 10 | 10 | 10 | 10 | 3 | 3 | 3 | 3 | 6 | 6 | 6 | 6 |
15 | 15 | 15 | 15 | 10 | 10 | 10 | 10 | 3 | 3 | 3 | 3 | 6 | 6 | 6 | 6 |
15 | 15 | 15 | 15 | 10 | 10 | 10 | 10 | 3 | 3 | 3 | 3 | 6 | 6 | 6 | 6 |
4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 16 | 16 | 16 | 16 | 9 | 9 | 9 | 9 |
4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 16 | 16 | 16 | 16 | 9 | 9 | 9 | 9 |
4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 16 | 16 | 16 | 16 | 9 | 9 | 9 | 9 |
4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 16 | 16 | 16 | 16 | 9 | 9 | 9 | 9 |
14 | 14 | 14 | 14 | 11 | 11 | 11 | 11 | 2 | 2 | 2 | 2 | 7 | 7 | 7 | 7 |
14 | 14 | 14 | 14 | 11 | 11 | 11 | 11 | 2 | 2 | 2 | 2 | 7 | 7 | 7 | 7 |
14 | 14 | 14 | 14 | 11 | 11 | 11 | 11 | 2 | 2 | 2 | 2 | 7 | 7 | 7 | 7 |
14 | 14 | 14 | 14 | 11 | 11 | 11 | 11 | 2 | 2 | 2 | 2 | 7 | 7 | 7 | 7 |
= Composite (pan)magic 16x16 square
1 | 8 | 13 | 12 | 128 | 121 | 116 | 117 | 193 | 200 | 205 | 204 | 192 | 185 | 180 | 181 |
15 | 10 | 3 | 6 | 114 | 119 | 126 | 123 | 207 | 202 | 195 | 198 | 178 | 183 | 190 | 187 |
4 | 5 | 16 | 9 | 125 | 124 | 113 | 120 | 196 | 197 | 208 | 201 | 189 | 188 | 177 | 184 |
14 | 11 | 2 | 7 | 115 | 118 | 127 | 122 | 206 | 203 | 194 | 199 | 179 | 182 | 191 | 186 |
240 | 233 | 228 | 229 | 145 | 152 | 157 | 156 | 48 | 41 | 36 | 37 | 81 | 88 | 93 | 92 |
226 | 231 | 238 | 235 | 159 | 154 | 147 | 150 | 34 | 39 | 46 | 43 | 95 | 90 | 83 | 86 |
237 | 236 | 225 | 232 | 148 | 149 | 160 | 153 | 45 | 44 | 33 | 40 | 84 | 85 | 96 | 89 |
227 | 230 | 239 | 234 | 158 | 155 | 146 | 151 | 35 | 38 | 47 | 42 | 94 | 91 | 82 | 87 |
64 | 57 | 52 | 53 | 65 | 72 | 77 | 76 | 256 | 249 | 244 | 245 | 129 | 136 | 141 | 140 |
50 | 55 | 62 | 59 | 79 | 74 | 67 | 70 | 242 | 247 | 254 | 251 | 143 | 138 | 131 | 134 |
61 | 60 | 49 | 56 | 68 | 69 | 80 | 73 | 253 | 252 | 241 | 248 | 132 | 133 | 144 | 137 |
51 | 54 | 63 | 58 | 78 | 75 | 66 | 71 | 243 | 246 | 255 | 250 | 142 | 139 | 130 | 135 |
209 | 216 | 221 | 220 | 176 | 169 | 164 | 165 | 17 | 24 | 29 | 28 | 112 | 105 | 100 | 101 |
223 | 218 | 211 | 214 | 162 | 167 | 174 | 171 | 31 | 26 | 19 | 22 | 98 | 103 | 110 | 107 |
212 | 213 | 224 | 217 | 173 | 172 | 161 | 168 | 20 | 21 | 32 | 25 | 109 | 108 | 97 | 104 |
222 | 219 | 210 | 215 | 163 | 166 | 175 | 170 | 30 | 27 | 18 | 23 | 99 | 102 | 111 | 106 |
Take from each 4x4 sub-square 1 number from the same cell (e.g. the [bold] number in the left top corner) and construct a 4x4 panmagic square:
514 | 514 | 514 | 514 | ||||
514 | 514 | ||||||
1 | 128 | 193 | 192 | ||||
240 | 145 | 48 | 81 | 514 | 514 | ||
64 | 65 | 256 | 129 | 514 | 514 | ||
209 | 176 | 17 | 112 | 514 | 514 | ||
514 | 514 | 514 | |||||
514 | 514 | 514 | |||||
514 | 514 | 514 |
Take from each 4x4 sub-square 4 numbers from the same cells (see yellow marked) and construct an 8x8 panmagic square:
1028 | 1028 | 1028 | 1028 | 1028 | 1028 | 1028 | 1028 | |||||
1028 | 1028 | |||||||||||
1028 | 4 | 13 | 125 | 116 | 196 | 205 | 189 | 180 | ||||
1028 | 14 | 2 | 115 | 127 | 206 | 194 | 179 | 191 | 1028 | 1028 | ||
1028 | 237 | 228 | 148 | 157 | 45 | 36 | 84 | 93 | 1028 | 1028 | ||
1028 | 227 | 239 | 158 | 146 | 35 | 47 | 94 | 82 | 1028 | 1028 | ||
1028 | 61 | 52 | 68 | 77 | 253 | 244 | 132 | 141 | 1028 | 1028 | ||
1028 | 51 | 63 | 78 | 66 | 243 | 255 | 142 | 130 | 1028 | 1028 | ||
1028 | 212 | 221 | 173 | 164 | 20 | 29 | 109 | 100 | 1028 | 1028 | ||
1028 | 222 | 210 | 163 | 175 | 30 | 18 | 99 | 111 | 1028 | 1028 |
Take from each 4x4 sub-square 9 numbers from the same cells (see underscored) and construct a 12x12 panmagic square:
1542 | 1542 | 1542 | 1542 | 1542 | 1542 | 1542 | 1542 | 1542 | 1542 | 1542 | 1542 | |||||
1542 | 1542 | |||||||||||||||
1542 | 10 | 13 | 12 | 119 | 116 | 117 | 202 | 205 | 204 | 183 | 180 | 181 | ||||
1542 | 5 | 16 | 6 | 124 | 113 | 123 | 197 | 208 | 198 | 188 | 177 | 187 | 1542 | 1542 | ||
1542 | 11 | 2 | 7 | 118 | 127 | 122 | 203 | 194 | 199 | 182 | 191 | 186 | 1542 | 1542 | ||
1542 | 231 | 228 | 229 | 154 | 157 | 156 | 39 | 36 | 37 | 90 | 93 | 92 | 1542 | 1542 | ||
1542 | 236 | 225 | 235 | 149 | 160 | 150 | 44 | 33 | 43 | 85 | 96 | 86 | 1542 | 1542 | ||
1542 | 230 | 239 | 234 | 155 | 146 | 151 | 38 | 47 | 42 | 91 | 82 | 87 | 1542 | 1542 | ||
1542 | 55 | 52 | 53 | 74 | 77 | 76 | 247 | 244 | 245 | 138 | 141 | 140 | 1542 | 1542 | ||
1542 | 60 | 49 | 59 | 69 | 80 | 70 | 252 | 241 | 251 | 133 | 144 | 134 | 1542 | 1542 | ||
1542 | 54 | 63 | 58 | 75 | 66 | 71 | 246 | 255 | 250 | 139 | 130 | 135 | 1542 | 1542 | ||
1542 | 218 | 221 | 220 | 167 | 164 | 165 | 26 | 29 | 28 | 103 | 100 | 101 | 1542 | 1542 | ||
1542 | 213 | 224 | 214 | 172 | 161 | 171 | 21 | 32 | 22 | 108 | 97 | 107 | 1542 | 1542 | ||
1542 | 219 | 210 | 215 | 166 | 175 | 170 | 27 | 18 | 23 | 102 | 111 | 106 | 1542 | 1542 |
Use this method to construct magic squares which are a multiple of 4 from 12x12 to infinite. See
12x12, 16x16, 20x20, 24x24a, 24x24b, 28x28, 32x32a and 32x32b