René Chrétien had noticed the 15x15 composite (4) magic square and showed me it is possible to use the method to construct magic squares of even orders as well.
Construct the 16x16 magic square by using 16 proportional 4x4 panmagic squares. The squares are proportional because all 16 panmagic 4x4 squares have the same magic sum of (1/4 x 2056 = ) 514. We use the basic key method (4x4) to produce the panmagic 4x4 squares. As row coordinates don't use 0 up to 3 but use 0 up to (16x4 -/- 1 = ) 63 instead. Take care that the sum of the row coordinates in each 4x4 square is the same (0+31+32+63 = 1+30+33+62 = ... = 15+16+47+48 = 126) to get proportional squares.
1x row coordinate +64x column coordinate + 1 = panmagic 4x4 square
0 | 31 | 32 | 63 | 0 | 3 | 1 | 2 | 1 | 224 | 97 | 192 | ||
32 | 63 | 0 | 31 | 3 | 0 | 2 | 1 | 225 | 64 | 129 | 96 | ||
31 | 0 | 63 | 32 | 2 | 1 | 3 | 0 | 160 | 65 | 256 | 33 | ||
63 | 32 | 31 | 0 | 1 | 2 | 0 | 3 | 128 | 161 | 32 | 193 | ||
1 | 30 | 33 | 62 | 0 | 3 | 1 | 2 | 2 | 223 | 98 | 191 | ||
33 | 62 | 1 | 30 | 3 | 0 | 2 | 1 | 226 | 63 | 130 | 95 | ||
30 | 1 | 62 | 33 | 2 | 1 | 3 | 0 | 159 | 66 | 255 | 34 | ||
62 | 33 | 30 | 1 | 1 | 2 | 0 | 3 | 127 | 162 | 31 | 194 | ||
2 | 29 | 34 | 61 | 0 | 3 | 1 | 2 | 3 | 222 | 99 | 190 | ||
34 | 61 | 2 | 29 | 3 | 0 | 2 | 1 | 227 | 62 | 131 | 94 | ||
29 | 2 | 61 | 34 | 2 | 1 | 3 | 0 | 158 | 67 | 254 | 35 | ||
61 | 34 | 29 | 2 | 1 | 2 | 0 | 3 | 126 | 163 | 30 | 195 | ||
3 | 28 | 35 | 60 | 0 | 3 | 1 | 2 | 4 | 221 | 100 | 189 | ||
35 | 60 | 3 | 28 | 3 | 0 | 2 | 1 | 228 | 61 | 132 | 93 | ||
28 | 3 | 60 | 35 | 2 | 1 | 3 | 0 | 157 | 68 | 253 | 36 | ||
60 | 35 | 28 | 3 | 1 | 2 | 0 | 3 | 125 | 164 | 29 | 196 | ||
4 | 27 | 36 | 59 | 0 | 3 | 1 | 2 | 5 | 220 | 101 | 188 | ||
36 | 59 | 4 | 27 | 3 | 0 | 2 | 1 | 229 | 60 | 133 | 92 | ||
27 | 4 | 59 | 36 | 2 | 1 | 3 | 0 | 156 | 69 | 252 | 37 | ||
59 | 36 | 27 | 4 | 1 | 2 | 0 | 3 | 124 | 165 | 28 | 197 | ||
5 | 26 | 37 | 58 | 0 | 3 | 1 | 2 | 6 | 219 | 102 | 187 | ||
37 | 58 | 5 | 26 | 3 | 0 | 2 | 1 | 230 | 59 | 134 | 91 | ||
26 | 5 | 58 | 37 | 2 | 1 | 3 | 0 | 155 | 70 | 251 | 38 | ||
58 | 37 | 26 | 5 | 1 | 2 | 0 | 3 | 123 | 166 | 27 | 198 | ||
6 | 25 | 38 | 57 | 0 | 3 | 1 | 2 | 7 | 218 | 103 | 186 | ||
38 | 57 | 6 | 25 | 3 | 0 | 2 | 1 | 231 | 58 | 135 | 90 | ||
25 | 6 | 57 | 38 | 2 | 1 | 3 | 0 | 154 | 71 | 250 | 39 | ||
57 | 38 | 25 | 6 | 1 | 2 | 0 | 3 | 122 | 167 | 26 | 199 | ||
7 | 24 | 39 | 56 | 0 | 3 | 1 | 2 | 8 | 217 | 104 | 185 | ||
39 | 56 | 7 | 24 | 3 | 0 | 2 | 1 | 232 | 57 | 136 | 89 | ||
24 | 7 | 56 | 39 | 2 | 1 | 3 | 0 | 153 | 72 | 249 | 40 | ||
56 | 39 | 24 | 7 | 1 | 2 | 0 | 3 | 121 | 168 | 25 | 200 | ||
8 | 23 | 40 | 55 | 0 | 3 | 1 | 2 | 9 | 216 | 105 | 184 | ||
40 | 55 | 8 | 23 | 3 | 0 | 2 | 1 | 233 | 56 | 137 | 88 | ||
23 | 8 | 55 | 40 | 2 | 1 | 3 | 0 | 152 | 73 | 248 | 41 | ||
55 | 40 | 23 | 8 | 1 | 2 | 0 | 3 | 120 | 169 | 24 | 201 | ||
9 | 22 | 41 | 54 | 0 | 3 | 1 | 2 | 10 | 215 | 106 | 183 | ||
41 | 54 | 9 | 22 | 3 | 0 | 2 | 1 | 234 | 55 | 138 | 87 | ||
22 | 9 | 54 | 41 | 2 | 1 | 3 | 0 | 151 | 74 | 247 | 42 | ||
54 | 41 | 22 | 9 | 1 | 2 | 0 | 3 | 119 | 170 | 23 | 202 | ||
10 | 21 | 42 | 53 | 0 | 3 | 1 | 2 | 11 | 214 | 107 | 182 | ||
42 | 53 | 10 | 21 | 3 | 0 | 2 | 1 | 235 | 54 | 139 | 86 | ||
21 | 10 | 53 | 42 | 2 | 1 | 3 | 0 | 150 | 75 | 246 | 43 | ||
53 | 42 | 21 | 10 | 1 | 2 | 0 | 3 | 118 | 171 | 22 | 203 | ||
11 | 20 | 43 | 52 | 0 | 3 | 1 | 2 | 12 | 213 | 108 | 181 | ||
43 | 52 | 11 | 20 | 3 | 0 | 2 | 1 | 236 | 53 | 140 | 85 | ||
20 | 11 | 52 | 43 | 2 | 1 | 3 | 0 | 149 | 76 | 245 | 44 | ||
52 | 43 | 20 | 11 | 1 | 2 | 0 | 3 | 117 | 172 | 21 | 204 | ||
12 | 19 | 44 | 51 | 0 | 3 | 1 | 2 | 13 | 212 | 109 | 180 | ||
44 | 51 | 12 | 19 | 3 | 0 | 2 | 1 | 237 | 52 | 141 | 84 | ||
19 | 12 | 51 | 44 | 2 | 1 | 3 | 0 | 148 | 77 | 244 | 45 | ||
51 | 44 | 19 | 12 | 1 | 2 | 0 | 3 | 116 | 173 | 20 | 205 | ||
13 | 18 | 45 | 50 | 0 | 3 | 1 | 2 | 14 | 211 | 110 | 179 | ||
45 | 50 | 13 | 18 | 3 | 0 | 2 | 1 | 238 | 51 | 142 | 83 | ||
18 | 13 | 50 | 45 | 2 | 1 | 3 | 0 | 147 | 78 | 243 | 46 | ||
50 | 45 | 18 | 13 | 1 | 2 | 0 | 3 | 115 | 174 | 19 | 206 | ||
14 | 17 | 46 | 49 | 0 | 3 | 1 | 2 | 15 | 210 | 111 | 178 | ||
46 | 49 | 14 | 17 | 3 | 0 | 2 | 1 | 239 | 50 | 143 | 82 | ||
17 | 14 | 49 | 46 | 2 | 1 | 3 | 0 | 146 | 79 | 242 | 47 | ||
49 | 46 | 17 | 14 | 1 | 2 | 0 | 3 | 114 | 175 | 18 | 207 | ||
15 | 16 | 47 | 48 | 0 | 3 | 1 | 2 | 16 | 209 | 112 | 177 | ||
47 | 48 | 15 | 16 | 3 | 0 | 2 | 1 | 240 | 49 | 144 | 81 | ||
16 | 15 | 48 | 47 | 2 | 1 | 3 | 0 | 145 | 80 | 241 | 48 | ||
48 | 47 | 16 | 15 | 1 | 2 | 0 | 3 | 113 | 176 | 17 | 208 |
Put the 16 panmagic 4x4 squares in sequence together.
16x16 magic square
1 | 224 | 97 | 192 | 2 | 223 | 98 | 191 | 3 | 222 | 99 | 190 | 4 | 221 | 100 | 189 |
225 | 64 | 129 | 96 | 226 | 63 | 130 | 95 | 227 | 62 | 131 | 94 | 228 | 61 | 132 | 93 |
160 | 65 | 256 | 33 | 159 | 66 | 255 | 34 | 158 | 67 | 254 | 35 | 157 | 68 | 253 | 36 |
128 | 161 | 32 | 193 | 127 | 162 | 31 | 194 | 126 | 163 | 30 | 195 | 125 | 164 | 29 | 196 |
5 | 220 | 101 | 188 | 6 | 219 | 102 | 187 | 7 | 218 | 103 | 186 | 8 | 217 | 104 | 185 |
229 | 60 | 133 | 92 | 230 | 59 | 134 | 91 | 231 | 58 | 135 | 90 | 232 | 57 | 136 | 89 |
156 | 69 | 252 | 37 | 155 | 70 | 251 | 38 | 154 | 71 | 250 | 39 | 153 | 72 | 249 | 40 |
124 | 165 | 28 | 197 | 123 | 166 | 27 | 198 | 122 | 167 | 26 | 199 | 121 | 168 | 25 | 200 |
9 | 216 | 105 | 184 | 10 | 215 | 106 | 183 | 11 | 214 | 107 | 182 | 12 | 213 | 108 | 181 |
233 | 56 | 137 | 88 | 234 | 55 | 138 | 87 | 235 | 54 | 139 | 86 | 236 | 53 | 140 | 85 |
152 | 73 | 248 | 41 | 151 | 74 | 247 | 42 | 150 | 75 | 246 | 43 | 149 | 76 | 245 | 44 |
120 | 169 | 24 | 201 | 119 | 170 | 23 | 202 | 118 | 171 | 22 | 203 | 117 | 172 | 21 | 204 |
13 | 212 | 109 | 180 | 14 | 211 | 110 | 179 | 15 | 210 | 111 | 178 | 16 | 209 | 112 | 177 |
237 | 52 | 141 | 84 | 238 | 51 | 142 | 83 | 239 | 50 | 143 | 82 | 240 | 49 | 144 | 81 |
148 | 77 | 244 | 45 | 147 | 78 | 243 | 46 | 146 | 79 | 242 | 47 | 145 | 80 | 241 | 48 |
116 | 173 | 20 | 205 | 115 | 174 | 19 | 206 | 114 | 175 | 18 | 207 | 113 | 176 | 17 | 208 |
The 16x16 magic square is not fully 2x2 compact. Use the Khajuraho method to swap numbers.
Franklin panmagic 16x16 square
4 | 224 | 97 | 189 | 3 | 223 | 98 | 190 | 2 | 222 | 99 | 191 | 1 | 221 | 100 | 192 |
225 | 61 | 132 | 96 | 226 | 62 | 131 | 95 | 227 | 63 | 130 | 94 | 228 | 64 | 129 | 93 |
160 | 68 | 253 | 33 | 159 | 67 | 254 | 34 | 158 | 66 | 255 | 35 | 157 | 65 | 256 | 36 |
125 | 161 | 32 | 196 | 126 | 162 | 31 | 195 | 127 | 163 | 30 | 194 | 128 | 164 | 29 | 193 |
8 | 220 | 101 | 185 | 7 | 219 | 102 | 186 | 6 | 218 | 103 | 187 | 5 | 217 | 104 | 188 |
229 | 57 | 136 | 92 | 230 | 58 | 135 | 91 | 231 | 59 | 134 | 90 | 232 | 60 | 133 | 89 |
156 | 72 | 249 | 37 | 155 | 71 | 250 | 38 | 154 | 70 | 251 | 39 | 153 | 69 | 252 | 40 |
121 | 165 | 28 | 200 | 122 | 166 | 27 | 199 | 123 | 167 | 26 | 198 | 124 | 168 | 25 | 197 |
12 | 216 | 105 | 181 | 11 | 215 | 106 | 182 | 10 | 214 | 107 | 183 | 9 | 213 | 108 | 184 |
233 | 53 | 140 | 88 | 234 | 54 | 139 | 87 | 235 | 55 | 138 | 86 | 236 | 56 | 137 | 85 |
152 | 76 | 245 | 41 | 151 | 75 | 246 | 42 | 150 | 74 | 247 | 43 | 149 | 73 | 248 | 44 |
117 | 169 | 24 | 204 | 118 | 170 | 23 | 203 | 119 | 171 | 22 | 202 | 120 | 172 | 21 | 201 |
16 | 212 | 109 | 177 | 15 | 211 | 110 | 178 | 14 | 210 | 111 | 179 | 13 | 209 | 112 | 180 |
237 | 49 | 144 | 84 | 238 | 50 | 143 | 83 | 239 | 51 | 142 | 82 | 240 | 52 | 141 | 81 |
148 | 80 | 241 | 45 | 147 | 79 | 242 | 46 | 146 | 78 | 243 | 47 | 145 | 77 | 244 | 48 |
113 | 173 | 20 | 208 | 114 | 174 | 19 | 207 | 115 | 175 | 18 | 206 | 116 | 176 | 17 | 205 |
This 16x16 magic square is panmagic, 2x2 compact and each 1/4 row/column/diagonal gives 1/4 of the magic sum.
I have used composite method, proportional (1) to construct
8x8, 9x9, 12x12a, 12x12b, 15x15a, 15x15b, 16x16a, 16x16b, 18x18, 20x20a, 20x20b, 21x21a, 21x21b, 24x24a, 24x24b, 24x24c, 27x27a, 27x27b, 28x28a, 28x28b, 30x30a, 30x30b,32x32a, 32x32b and 32x32c