Take a panmagic 17x17 square and add 36 to all numbers, so in the 17x17 inlay are the 289 middle numbers from 37 up to 325.
In the border are the 36 lowest (1 up to 36) and the 36 highest (326 up to 361) numbers. Read the explanation on webpage 3x3 in 5x5 & concentric, how to construct the border.
See in the download below how the 19x19 border has been constructed or use the download to puzzle your own border.
The result is:
Pan 17x17 in 19x19 magic square
23 |
36 |
33 |
31 |
28 |
27 |
26 |
21 |
19 |
346 |
347 |
348 |
350 |
351 |
354 |
355 |
359 |
360 |
25 |
327 |
37 |
291 |
242 |
209 |
176 |
143 |
110 |
77 |
316 |
300 |
267 |
234 |
201 |
168 |
135 |
102 |
69 |
35 |
328 |
323 |
307 |
258 |
240 |
191 |
158 |
125 |
92 |
59 |
43 |
282 |
249 |
216 |
183 |
150 |
117 |
84 |
34 |
330 |
66 |
50 |
289 |
256 |
207 |
189 |
140 |
107 |
74 |
313 |
297 |
264 |
231 |
198 |
165 |
132 |
99 |
32 |
332 |
81 |
320 |
304 |
271 |
238 |
205 |
156 |
138 |
89 |
56 |
40 |
279 |
246 |
213 |
180 |
147 |
114 |
30 |
333 |
96 |
63 |
47 |
286 |
253 |
220 |
187 |
154 |
105 |
87 |
310 |
294 |
261 |
228 |
195 |
162 |
129 |
29 |
338 |
111 |
78 |
317 |
301 |
268 |
235 |
202 |
169 |
136 |
103 |
54 |
53 |
276 |
243 |
210 |
177 |
144 |
24 |
340 |
126 |
93 |
60 |
44 |
283 |
250 |
217 |
184 |
151 |
118 |
85 |
324 |
292 |
274 |
225 |
192 |
159 |
22 |
342 |
141 |
108 |
75 |
314 |
298 |
265 |
232 |
199 |
166 |
133 |
100 |
67 |
51 |
290 |
241 |
223 |
174 |
20 |
344 |
172 |
123 |
90 |
57 |
41 |
280 |
247 |
214 |
181 |
148 |
115 |
82 |
321 |
305 |
272 |
239 |
190 |
18 |
17 |
188 |
139 |
121 |
72 |
311 |
295 |
262 |
229 |
196 |
163 |
130 |
97 |
64 |
48 |
287 |
254 |
221 |
345 |
13 |
203 |
170 |
137 |
88 |
70 |
38 |
277 |
244 |
211 |
178 |
145 |
112 |
79 |
318 |
302 |
269 |
236 |
349 |
10 |
218 |
185 |
152 |
119 |
86 |
309 |
308 |
259 |
226 |
193 |
160 |
127 |
94 |
61 |
45 |
284 |
251 |
352 |
9 |
233 |
200 |
167 |
134 |
101 |
68 |
52 |
275 |
257 |
208 |
175 |
142 |
109 |
76 |
315 |
299 |
266 |
353 |
6 |
248 |
215 |
182 |
149 |
116 |
83 |
322 |
306 |
273 |
224 |
206 |
157 |
124 |
91 |
58 |
42 |
281 |
356 |
5 |
263 |
230 |
197 |
164 |
131 |
98 |
65 |
49 |
288 |
255 |
222 |
173 |
155 |
106 |
73 |
312 |
296 |
357 |
4 |
278 |
245 |
212 |
179 |
146 |
113 |
80 |
319 |
303 |
270 |
237 |
204 |
171 |
122 |
104 |
55 |
39 |
358 |
1 |
293 |
260 |
227 |
194 |
161 |
128 |
95 |
62 |
46 |
285 |
252 |
219 |
186 |
153 |
120 |
71 |
325 |
361 |
337 |
326 |
329 |
331 |
334 |
335 |
336 |
341 |
343 |
16 |
15 |
14 |
12 |
11 |
8 |
7 |
3 |
2 |
339 |
You can use this method to construct magic squares of odd order from 5x5 to infinity. See on this website 5x5, 7x7, 9x9, 11x11, 13x13, 15x15, 17x17, 19x19, 21x21, 23x23, 25x25, 27x27, 29x29 & 31x31