Construct a row grid and a column grid. Use the middle numbers from 1 up to 17 to produce the 17x17 inlay with the shift method. Puzzle the border.
1x number from row grid +1
9 | 10 | 8 | 11 | 7 | 12 | 6 | 13 | 5 | 14 | 4 | 15 | 3 | 16 | 2 | 17 | 1 | 18 | 0 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
0 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 1 | 2 | 18 |
0 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 1 | 2 | 3 | 4 | 18 |
18 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 1 | 2 | 3 | 4 | 5 | 6 | 0 |
18 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 0 |
0 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 18 |
0 | 13 | 14 | 15 | 16 | 17 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 18 |
18 | 15 | 16 | 17 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 0 |
18 | 17 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 0 |
0 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 1 | 18 |
0 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 1 | 2 | 3 | 18 |
18 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 1 | 2 | 3 | 4 | 5 | 0 |
18 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 0 |
0 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 18 |
0 | 12 | 13 | 14 | 15 | 16 | 17 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 18 |
18 | 14 | 15 | 16 | 17 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 0 |
18 | 16 | 17 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 0 |
18 | 8 | 10 | 7 | 11 | 6 | 12 | 5 | 13 | 4 | 14 | 3 | 15 | 2 | 16 | 1 | 17 | 0 | 9 |
+19x number from column grid
0 | 0 | 0 | 18 | 18 | 0 | 0 | 18 | 18 | 0 | 0 | 18 | 18 | 0 | 0 | 18 | 18 | 18 | 9 |
18 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 0 |
1 | 16 | 17 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 17 |
17 | 14 | 15 | 16 | 17 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 1 |
2 | 12 | 13 | 14 | 15 | 16 | 17 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 16 |
16 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 2 |
3 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 15 |
15 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 1 | 2 | 3 | 4 | 5 | 3 |
4 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 1 | 2 | 3 | 14 |
14 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 1 | 4 |
5 | 17 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 13 |
13 | 15 | 16 | 17 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 5 |
6 | 13 | 14 | 15 | 16 | 17 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 12 |
12 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 6 |
7 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 11 |
11 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 1 | 2 | 3 | 4 | 10 |
10 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 1 | 2 | 8 |
9 | 18 | 18 | 0 | 0 | 18 | 18 | 0 | 0 | 18 | 18 | 0 | 0 | 18 | 18 | 0 | 0 | 0 | 18 |
= panmagic 17x17 in 19x19 magic square
10 | 11 | 9 | 354 | 350 | 13 | 7 | 356 | 348 | 15 | 5 | 358 | 346 | 17 | 3 | 360 | 344 | 361 | 172 |
343 | 21 | 41 | 61 | 81 | 101 | 121 | 141 | 161 | 181 | 201 | 221 | 241 | 261 | 281 | 301 | 321 | 341 | 19 |
20 | 308 | 328 | 25 | 45 | 65 | 85 | 105 | 125 | 145 | 165 | 185 | 205 | 225 | 245 | 265 | 268 | 288 | 342 |
324 | 272 | 292 | 312 | 332 | 29 | 49 | 69 | 89 | 109 | 129 | 149 | 169 | 189 | 192 | 212 | 232 | 252 | 38 |
57 | 236 | 256 | 276 | 296 | 316 | 336 | 33 | 53 | 73 | 93 | 113 | 116 | 136 | 156 | 176 | 196 | 216 | 305 |
323 | 200 | 220 | 240 | 260 | 280 | 300 | 320 | 340 | 37 | 40 | 60 | 80 | 100 | 120 | 140 | 160 | 180 | 39 |
58 | 164 | 184 | 204 | 224 | 244 | 264 | 284 | 287 | 307 | 327 | 24 | 44 | 64 | 84 | 104 | 124 | 144 | 304 |
286 | 128 | 148 | 168 | 188 | 208 | 211 | 231 | 251 | 271 | 291 | 311 | 331 | 28 | 48 | 68 | 88 | 108 | 76 |
95 | 92 | 112 | 132 | 135 | 155 | 175 | 195 | 215 | 235 | 255 | 275 | 295 | 315 | 335 | 32 | 52 | 72 | 267 |
285 | 56 | 59 | 79 | 99 | 119 | 139 | 159 | 179 | 199 | 219 | 239 | 259 | 279 | 299 | 319 | 339 | 36 | 77 |
96 | 326 | 23 | 43 | 63 | 83 | 103 | 123 | 143 | 163 | 183 | 203 | 223 | 243 | 263 | 283 | 303 | 306 | 266 |
248 | 290 | 310 | 330 | 27 | 47 | 67 | 87 | 107 | 127 | 147 | 167 | 187 | 207 | 227 | 230 | 250 | 270 | 114 |
133 | 254 | 274 | 294 | 314 | 334 | 31 | 51 | 71 | 91 | 111 | 131 | 151 | 154 | 174 | 194 | 214 | 234 | 229 |
247 | 218 | 238 | 258 | 278 | 298 | 318 | 338 | 35 | 55 | 75 | 78 | 98 | 118 | 138 | 158 | 178 | 198 | 115 |
134 | 182 | 202 | 222 | 242 | 262 | 282 | 302 | 322 | 325 | 22 | 42 | 62 | 82 | 102 | 122 | 142 | 162 | 228 |
210 | 146 | 166 | 186 | 206 | 226 | 246 | 249 | 269 | 289 | 309 | 329 | 26 | 46 | 66 | 86 | 106 | 126 | 152 |
171 | 110 | 130 | 150 | 170 | 173 | 193 | 213 | 233 | 253 | 273 | 293 | 313 | 333 | 30 | 50 | 70 | 90 | 191 |
209 | 74 | 94 | 97 | 117 | 137 | 157 | 177 | 197 | 217 | 237 | 257 | 277 | 297 | 317 | 337 | 34 | 54 | 153 |
190 | 351 | 353 | 8 | 12 | 349 | 355 | 6 | 14 | 347 | 357 | 4 | 16 | 345 | 359 | 2 | 18 | 1 | 352 |
Use this method to construct inlaid squares of odd order from 5x5 to infinity.
See 5x5, 7x7, 9x9, 11x11, 13x13, 15x15, 17x17, 19x19, 21x21, 23x23, 25x25, 27x27, 29x29 & 31x31