In 2004 Donald Morris discovered (see website http://www.bestfranklinsquares.com/mcm2) the basic key method. The basic key is a 2 x n [n = multiple of 4] magic rectangle. You can use the method to construct magic squares which are a multiple of 4.
See the
basic key to construct a 20x20 most perfect magic square:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Take care that the sum of each column is the highest + lowest number from 1 up to 20 (20 + 1 =) 21.
1 | 2 | 20 | 19 | 3 | 4 | 18 | 17 | 5 | 6 | 16 | 15 | 7 | 8 | 14 | 13 | 9 | 10 | 12 | 11 |
20 | 19 | 1 | 2 | 18 | 17 | 3 | 4 | 16 | 15 | 5 | 6 | 14 | 13 | 7 | 8 | 12 | 11 | 9 | 10 |
Copy the two rows to fill the 20x20 square completely.
The second grid is a reflection (rotated by a quarter and mirrored) of the first grid.
Take 1x number from first grid
1 | 2 | 20 | 19 | 3 | 4 | 18 | 17 | 5 | 6 | 16 | 15 | 7 | 8 | 14 | 13 | 9 | 10 | 12 | 11 |
20 | 19 | 1 | 2 | 18 | 17 | 3 | 4 | 16 | 15 | 5 | 6 | 14 | 13 | 7 | 8 | 12 | 11 | 9 | 10 |
1 | 2 | 20 | 19 | 3 | 4 | 18 | 17 | 5 | 6 | 16 | 15 | 7 | 8 | 14 | 13 | 9 | 10 | 12 | 11 |
20 | 19 | 1 | 2 | 18 | 17 | 3 | 4 | 16 | 15 | 5 | 6 | 14 | 13 | 7 | 8 | 12 | 11 | 9 | 10 |
1 | 2 | 20 | 19 | 3 | 4 | 18 | 17 | 5 | 6 | 16 | 15 | 7 | 8 | 14 | 13 | 9 | 10 | 12 | 11 |
20 | 19 | 1 | 2 | 18 | 17 | 3 | 4 | 16 | 15 | 5 | 6 | 14 | 13 | 7 | 8 | 12 | 11 | 9 | 10 |
1 | 2 | 20 | 19 | 3 | 4 | 18 | 17 | 5 | 6 | 16 | 15 | 7 | 8 | 14 | 13 | 9 | 10 | 12 | 11 |
20 | 19 | 1 | 2 | 18 | 17 | 3 | 4 | 16 | 15 | 5 | 6 | 14 | 13 | 7 | 8 | 12 | 11 | 9 | 10 |
1 | 2 | 20 | 19 | 3 | 4 | 18 | 17 | 5 | 6 | 16 | 15 | 7 | 8 | 14 | 13 | 9 | 10 | 12 | 11 |
20 | 19 | 1 | 2 | 18 | 17 | 3 | 4 | 16 | 15 | 5 | 6 | 14 | 13 | 7 | 8 | 12 | 11 | 9 | 10 |
1 | 2 | 20 | 19 | 3 | 4 | 18 | 17 | 5 | 6 | 16 | 15 | 7 | 8 | 14 | 13 | 9 | 10 | 12 | 11 |
20 | 19 | 1 | 2 | 18 | 17 | 3 | 4 | 16 | 15 | 5 | 6 | 14 | 13 | 7 | 8 | 12 | 11 | 9 | 10 |
1 | 2 | 20 | 19 | 3 | 4 | 18 | 17 | 5 | 6 | 16 | 15 | 7 | 8 | 14 | 13 | 9 | 10 | 12 | 11 |
20 | 19 | 1 | 2 | 18 | 17 | 3 | 4 | 16 | 15 | 5 | 6 | 14 | 13 | 7 | 8 | 12 | 11 | 9 | 10 |
1 | 2 | 20 | 19 | 3 | 4 | 18 | 17 | 5 | 6 | 16 | 15 | 7 | 8 | 14 | 13 | 9 | 10 | 12 | 11 |
20 | 19 | 1 | 2 | 18 | 17 | 3 | 4 | 16 | 15 | 5 | 6 | 14 | 13 | 7 | 8 | 12 | 11 | 9 | 10 |
1 | 2 | 20 | 19 | 3 | 4 | 18 | 17 | 5 | 6 | 16 | 15 | 7 | 8 | 14 | 13 | 9 | 10 | 12 | 11 |
20 | 19 | 1 | 2 | 18 | 17 | 3 | 4 | 16 | 15 | 5 | 6 | 14 | 13 | 7 | 8 | 12 | 11 | 9 | 10 |
1 | 2 | 20 | 19 | 3 | 4 | 18 | 17 | 5 | 6 | 16 | 15 | 7 | 8 | 14 | 13 | 9 | 10 | 12 | 11 |
20 | 19 | 1 | 2 | 18 | 17 | 3 | 4 | 16 | 15 | 5 | 6 | 14 | 13 | 7 | 8 | 12 | 11 | 9 | 10 |
+ 20x [number -/- 1] from second (= reflection of first grid)
1 | 20 | 1 | 20 | 1 | 20 | 1 | 20 | 1 | 20 | 1 | 20 | 1 | 20 | 1 | 20 | 1 | 20 | 1 | 20 |
2 | 19 | 2 | 19 | 2 | 19 | 2 | 19 | 2 | 19 | 2 | 19 | 2 | 19 | 2 | 19 | 2 | 19 | 2 | 19 |
20 | 1 | 20 | 1 | 20 | 1 | 20 | 1 | 20 | 1 | 20 | 1 | 20 | 1 | 20 | 1 | 20 | 1 | 20 | 1 |
19 | 2 | 19 | 2 | 19 | 2 | 19 | 2 | 19 | 2 | 19 | 2 | 19 | 2 | 19 | 2 | 19 | 2 | 19 | 2 |
3 | 18 | 3 | 18 | 3 | 18 | 3 | 18 | 3 | 18 | 3 | 18 | 3 | 18 | 3 | 18 | 3 | 18 | 3 | 18 |
4 | 17 | 4 | 17 | 4 | 17 | 4 | 17 | 4 | 17 | 4 | 17 | 4 | 17 | 4 | 17 | 4 | 17 | 4 | 17 |
18 | 3 | 18 | 3 | 18 | 3 | 18 | 3 | 18 | 3 | 18 | 3 | 18 | 3 | 18 | 3 | 18 | 3 | 18 | 3 |
17 | 4 | 17 | 4 | 17 | 4 | 17 | 4 | 17 | 4 | 17 | 4 | 17 | 4 | 17 | 4 | 17 | 4 | 17 | 4 |
5 | 16 | 5 | 16 | 5 | 16 | 5 | 16 | 5 | 16 | 5 | 16 | 5 | 16 | 5 | 16 | 5 | 16 | 5 | 16 |
6 | 15 | 6 | 15 | 6 | 15 | 6 | 15 | 6 | 15 | 6 | 15 | 6 | 15 | 6 | 15 | 6 | 15 | 6 | 15 |
16 | 5 | 16 | 5 | 16 | 5 | 16 | 5 | 16 | 5 | 16 | 5 | 16 | 5 | 16 | 5 | 16 | 5 | 16 | 5 |
15 | 6 | 15 | 6 | 15 | 6 | 15 | 6 | 15 | 6 | 15 | 6 | 15 | 6 | 15 | 6 | 15 | 6 | 15 | 6 |
7 | 14 | 7 | 14 | 7 | 14 | 7 | 14 | 7 | 14 | 7 | 14 | 7 | 14 | 7 | 14 | 7 | 14 | 7 | 14 |
8 | 13 | 8 | 13 | 8 | 13 | 8 | 13 | 8 | 13 | 8 | 13 | 8 | 13 | 8 | 13 | 8 | 13 | 8 | 13 |
14 | 7 | 14 | 7 | 14 | 7 | 14 | 7 | 14 | 7 | 14 | 7 | 14 | 7 | 14 | 7 | 14 | 7 | 14 | 7 |
13 | 8 | 13 | 8 | 13 | 8 | 13 | 8 | 13 | 8 | 13 | 8 | 13 | 8 | 13 | 8 | 13 | 8 | 13 | 8 |
9 | 12 | 9 | 12 | 9 | 12 | 9 | 12 | 9 | 12 | 9 | 12 | 9 | 12 | 9 | 12 | 9 | 12 | 9 | 12 |
10 | 11 | 10 | 11 | 10 | 11 | 10 | 11 | 10 | 11 | 10 | 11 | 10 | 11 | 10 | 11 | 10 | 11 | 10 | 11 |
12 | 9 | 12 | 9 | 12 | 9 | 12 | 9 | 12 | 9 | 12 | 9 | 12 | 9 | 12 | 9 | 12 | 9 | 12 | 9 |
11 | 10 | 11 | 10 | 11 | 10 | 11 | 10 | 11 | 10 | 11 | 10 | 11 | 10 | 11 | 10 | 11 | 10 | 11 | 10 |
= Most perfect 20x20 magic square
1 | 382 | 20 | 399 | 3 | 384 | 18 | 397 | 5 | 386 | 16 | 395 | 7 | 388 | 14 | 393 | 9 | 390 | 12 | 391 |
40 | 379 | 21 | 362 | 38 | 377 | 23 | 364 | 36 | 375 | 25 | 366 | 34 | 373 | 27 | 368 | 32 | 371 | 29 | 370 |
381 | 2 | 400 | 19 | 383 | 4 | 398 | 17 | 385 | 6 | 396 | 15 | 387 | 8 | 394 | 13 | 389 | 10 | 392 | 11 |
380 | 39 | 361 | 22 | 378 | 37 | 363 | 24 | 376 | 35 | 365 | 26 | 374 | 33 | 367 | 28 | 372 | 31 | 369 | 30 |
41 | 342 | 60 | 359 | 43 | 344 | 58 | 357 | 45 | 346 | 56 | 355 | 47 | 348 | 54 | 353 | 49 | 350 | 52 | 351 |
80 | 339 | 61 | 322 | 78 | 337 | 63 | 324 | 76 | 335 | 65 | 326 | 74 | 333 | 67 | 328 | 72 | 331 | 69 | 330 |
341 | 42 | 360 | 59 | 343 | 44 | 358 | 57 | 345 | 46 | 356 | 55 | 347 | 48 | 354 | 53 | 349 | 50 | 352 | 51 |
340 | 79 | 321 | 62 | 338 | 77 | 323 | 64 | 336 | 75 | 325 | 66 | 334 | 73 | 327 | 68 | 332 | 71 | 329 | 70 |
81 | 302 | 100 | 319 | 83 | 304 | 98 | 317 | 85 | 306 | 96 | 315 | 87 | 308 | 94 | 313 | 89 | 310 | 92 | 311 |
120 | 299 | 101 | 282 | 118 | 297 | 103 | 284 | 116 | 295 | 105 | 286 | 114 | 293 | 107 | 288 | 112 | 291 | 109 | 290 |
301 | 82 | 320 | 99 | 303 | 84 | 318 | 97 | 305 | 86 | 316 | 95 | 307 | 88 | 314 | 93 | 309 | 90 | 312 | 91 |
300 | 119 | 281 | 102 | 298 | 117 | 283 | 104 | 296 | 115 | 285 | 106 | 294 | 113 | 287 | 108 | 292 | 111 | 289 | 110 |
121 | 262 | 140 | 279 | 123 | 264 | 138 | 277 | 125 | 266 | 136 | 275 | 127 | 268 | 134 | 273 | 129 | 270 | 132 | 271 |
160 | 259 | 141 | 242 | 158 | 257 | 143 | 244 | 156 | 255 | 145 | 246 | 154 | 253 | 147 | 248 | 152 | 251 | 149 | 250 |
261 | 122 | 280 | 139 | 263 | 124 | 278 | 137 | 265 | 126 | 276 | 135 | 267 | 128 | 274 | 133 | 269 | 130 | 272 | 131 |
260 | 159 | 241 | 142 | 258 | 157 | 243 | 144 | 256 | 155 | 245 | 146 | 254 | 153 | 247 | 148 | 252 | 151 | 249 | 150 |
161 | 222 | 180 | 239 | 163 | 224 | 178 | 237 | 165 | 226 | 176 | 235 | 167 | 228 | 174 | 233 | 169 | 230 | 172 | 231 |
200 | 219 | 181 | 202 | 198 | 217 | 183 | 204 | 196 | 215 | 185 | 206 | 194 | 213 | 187 | 208 | 192 | 211 | 189 | 210 |
221 | 162 | 240 | 179 | 223 | 164 | 238 | 177 | 225 | 166 | 236 | 175 | 227 | 168 | 234 | 173 | 229 | 170 | 232 | 171 |
220 | 199 | 201 | 182 | 218 | 197 | 203 | 184 | 216 | 195 | 205 | 186 | 214 | 193 | 207 | 188 | 212 | 191 | 209 | 190 |
Use this method to construct most perfect magic squares of order is multiple of 4 from 4x4 to infinity. See 4x4, 8x8, 12x12, 16x16, 20x20, 24x24, 28x28, 32x32