Use 5x5 the same 4x4 Sudoku pattern (as first grid) and a second fixed grid to construct a most perfect magic 20x20 square.
Take 1x number from first grid +1
2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 |
3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 |
0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 |
1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 |
2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 |
3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 |
0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 |
1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 |
2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 |
3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 |
0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 |
1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 |
2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 |
3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 |
0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 |
1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 |
2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 |
3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 |
0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 |
1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 |
+ 4x number from second grid
99 | 9 | 90 | 0 | 98 | 8 | 91 | 1 | 97 | 7 | 92 | 2 | 96 | 6 | 93 | 3 | 95 | 5 | 94 | 4 |
0 | 90 | 9 | 99 | 1 | 91 | 8 | 98 | 2 | 92 | 7 | 97 | 3 | 93 | 6 | 96 | 4 | 94 | 5 | 95 |
9 | 99 | 0 | 90 | 8 | 98 | 1 | 91 | 7 | 97 | 2 | 92 | 6 | 96 | 3 | 93 | 5 | 95 | 4 | 94 |
90 | 0 | 99 | 9 | 91 | 1 | 98 | 8 | 92 | 2 | 97 | 7 | 93 | 3 | 96 | 6 | 94 | 4 | 95 | 5 |
89 | 19 | 80 | 10 | 88 | 18 | 81 | 11 | 87 | 17 | 82 | 12 | 86 | 16 | 83 | 13 | 85 | 15 | 84 | 14 |
10 | 80 | 19 | 89 | 11 | 81 | 18 | 88 | 12 | 82 | 17 | 87 | 13 | 83 | 16 | 86 | 14 | 84 | 15 | 85 |
19 | 89 | 10 | 80 | 18 | 88 | 11 | 81 | 17 | 87 | 12 | 82 | 16 | 86 | 13 | 83 | 15 | 85 | 14 | 84 |
80 | 10 | 89 | 19 | 81 | 11 | 88 | 18 | 82 | 12 | 87 | 17 | 83 | 13 | 86 | 16 | 84 | 14 | 85 | 15 |
79 | 29 | 70 | 20 | 78 | 28 | 71 | 21 | 77 | 27 | 72 | 22 | 76 | 26 | 73 | 23 | 75 | 25 | 74 | 24 |
20 | 70 | 29 | 79 | 21 | 71 | 28 | 78 | 22 | 72 | 27 | 77 | 23 | 73 | 26 | 76 | 24 | 74 | 25 | 75 |
29 | 79 | 20 | 70 | 28 | 78 | 21 | 71 | 27 | 77 | 22 | 72 | 26 | 76 | 23 | 73 | 25 | 75 | 24 | 74 |
70 | 20 | 79 | 29 | 71 | 21 | 78 | 28 | 72 | 22 | 77 | 27 | 73 | 23 | 76 | 26 | 74 | 24 | 75 | 25 |
69 | 39 | 60 | 30 | 68 | 38 | 61 | 31 | 67 | 37 | 62 | 32 | 66 | 36 | 63 | 33 | 65 | 35 | 64 | 34 |
30 | 60 | 39 | 69 | 31 | 61 | 38 | 68 | 32 | 62 | 37 | 67 | 33 | 63 | 36 | 66 | 34 | 64 | 35 | 65 |
39 | 69 | 30 | 60 | 38 | 68 | 31 | 61 | 37 | 67 | 32 | 62 | 36 | 66 | 33 | 63 | 35 | 65 | 34 | 64 |
60 | 30 | 69 | 39 | 61 | 31 | 68 | 38 | 62 | 32 | 67 | 37 | 63 | 33 | 66 | 36 | 64 | 34 | 65 | 35 |
59 | 49 | 50 | 40 | 58 | 48 | 51 | 41 | 57 | 47 | 52 | 42 | 56 | 46 | 53 | 43 | 55 | 45 | 54 | 44 |
40 | 50 | 49 | 59 | 41 | 51 | 48 | 58 | 42 | 52 | 47 | 57 | 43 | 53 | 46 | 56 | 44 | 54 | 45 | 55 |
49 | 59 | 40 | 50 | 48 | 58 | 41 | 51 | 47 | 57 | 42 | 52 | 46 | 56 | 43 | 53 | 45 | 55 | 44 | 54 |
50 | 40 | 59 | 49 | 51 | 41 | 58 | 48 | 52 | 42 | 57 | 47 | 53 | 43 | 56 | 46 | 54 | 44 | 55 | 45 |
= 20x20 most perfect magic square
399 | 38 | 364 | 1 | 395 | 34 | 368 | 5 | 391 | 30 | 372 | 9 | 387 | 26 | 376 | 13 | 383 | 22 | 380 | 17 |
4 | 361 | 39 | 398 | 8 | 365 | 35 | 394 | 12 | 369 | 31 | 390 | 16 | 373 | 27 | 386 | 20 | 377 | 23 | 382 |
37 | 400 | 2 | 363 | 33 | 396 | 6 | 367 | 29 | 392 | 10 | 371 | 25 | 388 | 14 | 375 | 21 | 384 | 18 | 379 |
362 | 3 | 397 | 40 | 366 | 7 | 393 | 36 | 370 | 11 | 389 | 32 | 374 | 15 | 385 | 28 | 378 | 19 | 381 | 24 |
359 | 78 | 324 | 41 | 355 | 74 | 328 | 45 | 351 | 70 | 332 | 49 | 347 | 66 | 336 | 53 | 343 | 62 | 340 | 57 |
44 | 321 | 79 | 358 | 48 | 325 | 75 | 354 | 52 | 329 | 71 | 350 | 56 | 333 | 67 | 346 | 60 | 337 | 63 | 342 |
77 | 360 | 42 | 323 | 73 | 356 | 46 | 327 | 69 | 352 | 50 | 331 | 65 | 348 | 54 | 335 | 61 | 344 | 58 | 339 |
322 | 43 | 357 | 80 | 326 | 47 | 353 | 76 | 330 | 51 | 349 | 72 | 334 | 55 | 345 | 68 | 338 | 59 | 341 | 64 |
319 | 118 | 284 | 81 | 315 | 114 | 288 | 85 | 311 | 110 | 292 | 89 | 307 | 106 | 296 | 93 | 303 | 102 | 300 | 97 |
84 | 281 | 119 | 318 | 88 | 285 | 115 | 314 | 92 | 289 | 111 | 310 | 96 | 293 | 107 | 306 | 100 | 297 | 103 | 302 |
117 | 320 | 82 | 283 | 113 | 316 | 86 | 287 | 109 | 312 | 90 | 291 | 105 | 308 | 94 | 295 | 101 | 304 | 98 | 299 |
282 | 83 | 317 | 120 | 286 | 87 | 313 | 116 | 290 | 91 | 309 | 112 | 294 | 95 | 305 | 108 | 298 | 99 | 301 | 104 |
279 | 158 | 244 | 121 | 275 | 154 | 248 | 125 | 271 | 150 | 252 | 129 | 267 | 146 | 256 | 133 | 263 | 142 | 260 | 137 |
124 | 241 | 159 | 278 | 128 | 245 | 155 | 274 | 132 | 249 | 151 | 270 | 136 | 253 | 147 | 266 | 140 | 257 | 143 | 262 |
157 | 280 | 122 | 243 | 153 | 276 | 126 | 247 | 149 | 272 | 130 | 251 | 145 | 268 | 134 | 255 | 141 | 264 | 138 | 259 |
242 | 123 | 277 | 160 | 246 | 127 | 273 | 156 | 250 | 131 | 269 | 152 | 254 | 135 | 265 | 148 | 258 | 139 | 261 | 144 |
239 | 198 | 204 | 161 | 235 | 194 | 208 | 165 | 231 | 190 | 212 | 169 | 227 | 186 | 216 | 173 | 223 | 182 | 220 | 177 |
164 | 201 | 199 | 238 | 168 | 205 | 195 | 234 | 172 | 209 | 191 | 230 | 176 | 213 | 187 | 226 | 180 | 217 | 183 | 222 |
197 | 240 | 162 | 203 | 193 | 236 | 166 | 207 | 189 | 232 | 170 | 211 | 185 | 228 | 174 | 215 | 181 | 224 | 178 | 219 |
202 | 163 | 237 | 200 | 206 | 167 | 233 | 196 | 210 | 171 | 229 | 192 | 214 | 175 | 225 | 188 | 218 | 179 | 221 | 184 |
Use this method to construct most perfect (Franklin pan)magic squares which are a multiple of 4 from 8x8 to infinite. See
8x8, 12x12, 16x16, 20x20, 24x24, 28x28 and 32x32