Paulus Gerdes introduced the Liki magic square (see http://plus.maths.org/content/new-designs-africa). He showed that it is possible to transform a square with consecutive numbers into a magic square by swapping half of the numbers symmetrically. You can use this method to construct magic squares which are a multiple of 4 (= 4x4, 8x8, 12x12, 16x16, ... magic square).
Paulus Gerdes constructed the following symmetric 8x8 magic square:
8x8 square with consecutive numbers
232 |
240 |
248 |
256 |
264 |
272 |
280 |
288 |
|||
260 |
260 |
|||||||||
36 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
||
100 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
||
164 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
||
228 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
||
292 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
||
356 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
||
420 |
49 |
50 |
51 |
52 |
53 |
54 |
55 |
56 |
||
484 |
57 |
58 |
59 |
60 |
61 |
62 |
63 |
64 |
Symmetric 8x8 magic square
260 |
260 |
250 |
260 |
260 |
260 |
260 |
260 |
|||
260 |
260 |
|||||||||
260 |
1 |
63 |
3 |
61 |
60 |
6 |
58 |
8 |
||
260 |
56 |
55 |
11 |
12 |
13 |
14 |
50 |
49 |
||
260 |
17 |
18 |
46 |
45 |
44 |
43 |
23 |
24 |
||
250 |
40 |
26 |
28 |
28 |
29 |
35 |
31 |
33 |
||
260 |
32 |
34 |
30 |
36 |
37 |
27 |
39 |
25 |
||
260 |
41 |
42 |
22 |
21 |
20 |
19 |
47 |
48 |
||
260 |
16 |
15 |
51 |
52 |
53 |
54 |
10 |
9 |
||
260 |
57 |
7 |
59 |
5 |
4 |
62 |
2 |
64 |
You can use Paulus' method also to construct a 20x20 magic square. If you swap the numbers in the same cells of each 4x4 sub-square, you get a magic 20x20 square with more magic features:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |
61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 |
81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |
101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 |
121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 |
141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 |
161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 |
181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 |
201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 |
221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 |
241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 |
261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | 274 | 275 | 276 | 277 | 278 | 279 | 280 |
281 | 282 | 283 | 284 | 285 | 286 | 287 | 288 | 289 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 | 300 |
301 | 302 | 303 | 304 | 305 | 306 | 307 | 308 | 309 | 310 | 311 | 312 | 313 | 314 | 315 | 316 | 317 | 318 | 319 | 320 |
321 | 322 | 323 | 324 | 325 | 326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 | 334 | 335 | 336 | 337 | 338 | 339 | 340 |
341 | 342 | 343 | 344 | 345 | 346 | 347 | 348 | 349 | 350 | 351 | 352 | 353 | 354 | 355 | 356 | 357 | 358 | 359 | 360 |
361 | 362 | 363 | 364 | 365 | 366 | 367 | 368 | 369 | 370 | 371 | 372 | 373 | 374 | 375 | 376 | 377 | 378 | 379 | 380 |
381 | 382 | 383 | 384 | 385 | 386 | 387 | 388 | 389 | 390 | 391 | 392 | 393 | 394 | 395 | 396 | 397 | 398 | 399 | 400 |
1 | 399 | 398 | 4 | 5 | 395 | 394 | 8 | 9 | 391 | 390 | 12 | 13 | 387 | 386 | 16 | 17 | 383 | 382 | 20 |
380 | 22 | 23 | 377 | 376 | 26 | 27 | 373 | 372 | 30 | 31 | 369 | 368 | 34 | 35 | 365 | 364 | 38 | 39 | 361 |
360 | 42 | 43 | 357 | 356 | 46 | 47 | 353 | 352 | 50 | 51 | 349 | 348 | 54 | 55 | 345 | 344 | 58 | 59 | 341 |
61 | 339 | 338 | 64 | 65 | 335 | 334 | 68 | 69 | 331 | 330 | 72 | 73 | 327 | 326 | 76 | 77 | 323 | 322 | 80 |
81 | 319 | 318 | 84 | 85 | 315 | 314 | 88 | 89 | 311 | 310 | 92 | 93 | 307 | 306 | 96 | 97 | 303 | 302 | 100 |
300 | 102 | 103 | 297 | 296 | 106 | 107 | 293 | 292 | 110 | 111 | 289 | 288 | 114 | 115 | 285 | 284 | 118 | 119 | 281 |
280 | 122 | 123 | 277 | 276 | 126 | 127 | 273 | 272 | 130 | 131 | 269 | 268 | 134 | 135 | 265 | 264 | 138 | 139 | 261 |
141 | 259 | 258 | 144 | 145 | 255 | 254 | 148 | 149 | 251 | 250 | 152 | 153 | 247 | 246 | 156 | 157 | 243 | 242 | 160 |
161 | 239 | 238 | 164 | 165 | 235 | 234 | 168 | 169 | 231 | 230 | 172 | 173 | 227 | 226 | 176 | 177 | 223 | 222 | 180 |
220 | 182 | 183 | 217 | 216 | 186 | 187 | 213 | 212 | 190 | 191 | 209 | 208 | 194 | 195 | 205 | 204 | 198 | 199 | 201 |
200 | 202 | 203 | 197 | 196 | 206 | 207 | 193 | 192 | 210 | 211 | 189 | 188 | 214 | 215 | 185 | 184 | 218 | 219 | 181 |
221 | 179 | 178 | 224 | 225 | 175 | 174 | 228 | 229 | 171 | 170 | 232 | 233 | 167 | 166 | 236 | 237 | 163 | 162 | 240 |
241 | 159 | 158 | 244 | 245 | 155 | 154 | 248 | 249 | 151 | 150 | 252 | 253 | 147 | 146 | 256 | 257 | 143 | 142 | 260 |
140 | 262 | 263 | 137 | 136 | 266 | 267 | 133 | 132 | 270 | 271 | 129 | 128 | 274 | 275 | 125 | 124 | 278 | 279 | 121 |
120 | 282 | 283 | 117 | 116 | 286 | 287 | 113 | 112 | 290 | 291 | 109 | 108 | 294 | 295 | 105 | 104 | 298 | 299 | 101 |
301 | 99 | 98 | 304 | 305 | 95 | 94 | 308 | 309 | 91 | 90 | 312 | 313 | 87 | 86 | 316 | 317 | 83 | 82 | 320 |
321 | 79 | 78 | 324 | 325 | 75 | 74 | 328 | 329 | 71 | 70 | 332 | 333 | 67 | 66 | 336 | 337 | 63 | 62 | 340 |
60 | 342 | 343 | 57 | 56 | 346 | 347 | 53 | 52 | 350 | 351 | 49 | 48 | 354 | 355 | 45 | 44 | 358 | 359 | 41 |
40 | 362 | 363 | 37 | 36 | 366 | 367 | 33 | 32 | 370 | 371 | 29 | 28 | 374 | 375 | 25 | 24 | 378 | 379 | 21 |
381 | 19 | 18 | 384 | 385 | 15 | 14 | 388 | 389 | 11 | 10 | 392 | 393 | 7 | 6 | 396 | 397 | 3 | 2 | 400 |
This 20x20 magic square is not only symmetric, but each 1/5 row/column gives 1/5 of the magic sum.
If you change the starting position of the 20x20 square with consecutive numbers, than you can construct an ultra magic 20x20 square:
1 | 2 | 6 | 5 | 9 | 10 | 14 | 13 | 17 | 18 | 22 | 21 | 25 | 26 | 30 | 29 | 33 | 34 | 38 | 37 |
3 | 4 | 8 | 7 | 11 | 12 | 16 | 15 | 19 | 20 | 24 | 23 | 27 | 28 | 32 | 31 | 35 | 36 | 40 | 39 |
43 | 44 | 48 | 47 | 51 | 52 | 56 | 55 | 59 | 60 | 64 | 63 | 67 | 68 | 72 | 71 | 75 | 76 | 80 | 79 |
41 | 42 | 46 | 45 | 49 | 50 | 54 | 53 | 57 | 58 | 62 | 61 | 65 | 66 | 70 | 69 | 73 | 74 | 78 | 77 |
81 | 82 | 86 | 85 | 89 | 90 | 94 | 93 | 97 | 98 | 102 | 101 | 105 | 106 | 110 | 109 | 113 | 114 | 118 | 117 |
83 | 84 | 88 | 87 | 91 | 92 | 96 | 95 | 99 | 100 | 104 | 103 | 107 | 108 | 112 | 111 | 115 | 116 | 120 | 119 |
123 | 124 | 128 | 127 | 131 | 132 | 136 | 135 | 139 | 140 | 144 | 143 | 147 | 148 | 152 | 151 | 155 | 156 | 160 | 159 |
121 | 122 | 126 | 125 | 129 | 130 | 134 | 133 | 137 | 138 | 142 | 141 | 145 | 146 | 150 | 149 | 153 | 154 | 158 | 157 |
161 | 162 | 166 | 165 | 169 | 170 | 174 | 173 | 177 | 178 | 182 | 181 | 185 | 186 | 190 | 189 | 193 | 194 | 198 | 197 |
163 | 164 | 168 | 167 | 171 | 172 | 176 | 175 | 179 | 180 | 184 | 183 | 187 | 188 | 192 | 191 | 195 | 196 | 200 | 199 |
203 | 204 | 208 | 207 | 211 | 212 | 216 | 215 | 219 | 220 | 224 | 223 | 227 | 228 | 232 | 231 | 235 | 236 | 240 | 239 |
201 | 202 | 206 | 205 | 209 | 210 | 214 | 213 | 217 | 218 | 222 | 221 | 225 | 226 | 230 | 229 | 233 | 234 | 238 | 237 |
241 | 242 | 246 | 245 | 249 | 250 | 254 | 253 | 257 | 258 | 262 | 261 | 265 | 266 | 270 | 269 | 273 | 274 | 278 | 277 |
243 | 244 | 248 | 247 | 251 | 252 | 256 | 255 | 259 | 260 | 264 | 263 | 267 | 268 | 272 | 271 | 275 | 276 | 280 | 279 |
283 | 284 | 288 | 287 | 291 | 292 | 296 | 295 | 299 | 300 | 304 | 303 | 307 | 308 | 312 | 311 | 315 | 316 | 320 | 319 |
281 | 282 | 286 | 285 | 289 | 290 | 294 | 293 | 297 | 298 | 302 | 301 | 305 | 306 | 310 | 309 | 313 | 314 | 318 | 317 |
321 | 322 | 326 | 325 | 329 | 330 | 334 | 333 | 337 | 338 | 342 | 341 | 345 | 346 | 350 | 349 | 353 | 354 | 358 | 357 |
323 | 324 | 328 | 327 | 331 | 332 | 336 | 335 | 339 | 340 | 344 | 343 | 347 | 348 | 352 | 351 | 355 | 356 | 360 | 359 |
363 | 364 | 368 | 367 | 371 | 372 | 376 | 375 | 379 | 380 | 384 | 383 | 387 | 388 | 392 | 391 | 395 | 396 | 400 | 399 |
361 | 362 | 366 | 365 | 369 | 370 | 374 | 373 | 377 | 378 | 382 | 381 | 385 | 386 | 390 | 389 | 393 | 394 | 398 | 397 |
1 | 399 | 6 | 396 | 9 | 391 | 14 | 388 | 17 | 383 | 22 | 380 | 25 | 375 | 30 | 372 | 33 | 367 | 38 | 364 |
398 | 4 | 393 | 7 | 390 | 12 | 385 | 15 | 382 | 20 | 377 | 23 | 374 | 28 | 369 | 31 | 366 | 36 | 361 | 39 |
43 | 357 | 48 | 354 | 51 | 349 | 56 | 346 | 59 | 341 | 64 | 338 | 67 | 333 | 72 | 330 | 75 | 325 | 80 | 322 |
360 | 42 | 355 | 45 | 352 | 50 | 347 | 53 | 344 | 58 | 339 | 61 | 336 | 66 | 331 | 69 | 328 | 74 | 323 | 77 |
81 | 319 | 86 | 316 | 89 | 311 | 94 | 308 | 97 | 303 | 102 | 300 | 105 | 295 | 110 | 292 | 113 | 287 | 118 | 284 |
318 | 84 | 313 | 87 | 310 | 92 | 305 | 95 | 302 | 100 | 297 | 103 | 294 | 108 | 289 | 111 | 286 | 116 | 281 | 119 |
123 | 277 | 128 | 274 | 131 | 269 | 136 | 266 | 139 | 261 | 144 | 258 | 147 | 253 | 152 | 250 | 155 | 245 | 160 | 242 |
280 | 122 | 275 | 125 | 272 | 130 | 267 | 133 | 264 | 138 | 259 | 141 | 256 | 146 | 251 | 149 | 248 | 154 | 243 | 157 |
161 | 239 | 166 | 236 | 169 | 231 | 174 | 228 | 177 | 223 | 182 | 220 | 185 | 215 | 190 | 212 | 193 | 207 | 198 | 204 |
238 | 164 | 233 | 167 | 230 | 172 | 225 | 175 | 222 | 180 | 217 | 183 | 214 | 188 | 209 | 191 | 206 | 196 | 201 | 199 |
203 | 197 | 208 | 194 | 211 | 189 | 216 | 186 | 219 | 181 | 224 | 178 | 227 | 173 | 232 | 170 | 235 | 165 | 240 | 162 |
200 | 202 | 195 | 205 | 192 | 210 | 187 | 213 | 184 | 218 | 179 | 221 | 176 | 226 | 171 | 229 | 168 | 234 | 163 | 237 |
241 | 159 | 246 | 156 | 249 | 151 | 254 | 148 | 257 | 143 | 262 | 140 | 265 | 135 | 270 | 132 | 273 | 127 | 278 | 124 |
158 | 244 | 153 | 247 | 150 | 252 | 145 | 255 | 142 | 260 | 137 | 263 | 134 | 268 | 129 | 271 | 126 | 276 | 121 | 279 |
283 | 117 | 288 | 114 | 291 | 109 | 296 | 106 | 299 | 101 | 304 | 98 | 307 | 93 | 312 | 90 | 315 | 85 | 320 | 82 |
120 | 282 | 115 | 285 | 112 | 290 | 107 | 293 | 104 | 298 | 99 | 301 | 96 | 306 | 91 | 309 | 88 | 314 | 83 | 317 |
321 | 79 | 326 | 76 | 329 | 71 | 334 | 68 | 337 | 63 | 342 | 60 | 345 | 55 | 350 | 52 | 353 | 47 | 358 | 44 |
78 | 324 | 73 | 327 | 70 | 332 | 65 | 335 | 62 | 340 | 57 | 343 | 54 | 348 | 49 | 351 | 46 | 356 | 41 | 359 |
363 | 37 | 368 | 34 | 371 | 29 | 376 | 26 | 379 | 21 | 384 | 18 | 387 | 13 | 392 | 10 | 395 | 5 | 400 | 2 |
40 | 362 | 35 | 365 | 32 | 370 | 27 | 373 | 24 | 378 | 19 | 381 | 16 | 386 | 11 | 389 | 8 | 394 | 3 | 397 |
This magic 20x20 square is panmagic, 2x2 compact, each 1/5 row/column gives 1/5 of the magic sum, but it is not symmetric.
Use this method to construct magic squares of order is multiple of 4 from 4x4 to infinity. See 4x4, 8x8, 12x12, 16x16, 20x20, 24x24, 28x28, 32x32