Use 49 proportional (semi)magic 3x3 squares to produce a 21x21 magic square. Proportional means that all 49 (semi)magic 3x3 squares have the same magic sum of (1/7 x 4641 = ) 663. Use the row and column coordinates of the 3x3 magic square. Don't use the digits 0 up to 2, but 1 up to (49x3 = ) 147 instead. You must divide the row coordinates proportional over the 49 magic 3x3 squares. Use the table and connect each of the 7 rows to the other 7 rows to get (7x7x3 =) 147 row coordinates:
1 | 4 | 7 | 12 | |
2 | 7 | 3 | 12 | |
3 | 5 | 4 | 12 | |
4 | 2 | 6 | 12 | |
5 | 6 | 1 | 12 | |
6 | 1 | 5 | 12 | |
7 | 3 | 2 | 12 |
Construct the 49 (semi)magic 3x3 squares.
Row coordinate +147x column coordinate = (semi)magic 3x3 square
74 | 1 | 147 | 0 | 2 | 1 | 74 | 295 | 294 | ||
147 | 74 | 1 | 2 | 1 | 0 | 441 | 221 | 1 | ||
1 | 147 | 74 | 1 | 0 | 2 | 148 | 147 | 368 | ||
77 | 2 | 143 | 0 | 2 | 1 | 77 | 296 | 290 | ||
143 | 77 | 2 | 2 | 1 | 0 | 437 | 224 | 2 | ||
2 | 143 | 77 | 1 | 0 | 2 | 149 | 143 | 371 | ||
75 | 3 | 144 | 0 | 2 | 1 | 75 | 297 | 291 | ||
144 | 75 | 3 | 2 | 1 | 0 | 438 | 222 | 3 | ||
3 | 144 | 75 | 1 | 0 | 2 | 150 | 144 | 369 | ||
72 | 4 | 146 | 0 | 2 | 1 | 72 | 298 | 293 | ||
146 | 72 | 4 | 2 | 1 | 0 | 440 | 219 | 4 | ||
4 | 146 | 72 | 1 | 0 | 2 | 151 | 146 | 366 | ||
76 | 5 | 141 | 0 | 2 | 1 | 76 | 299 | 288 | ||
141 | 76 | 5 | 2 | 1 | 0 | 435 | 223 | 5 | ||
5 | 141 | 76 | 1 | 0 | 2 | 152 | 141 | 370 | ||
71 | 6 | 145 | 0 | 2 | 1 | 71 | 300 | 292 | ||
145 | 71 | 6 | 2 | 1 | 0 | 439 | 218 | 6 | ||
6 | 145 | 71 | 1 | 0 | 2 | 153 | 145 | 365 | ||
73 | 7 | 142 | 0 | 2 | 1 | 73 | 301 | 289 | ||
142 | 73 | 7 | 2 | 1 | 0 | 436 | 220 | 7 | ||
7 | 142 | 73 | 1 | 0 | 2 | 154 | 142 | 367 | ||
95 | 8 | 119 | 0 | 2 | 1 | 95 | 302 | 266 | ||
119 | 95 | 8 | 2 | 1 | 0 | 413 | 242 | 8 | ||
8 | 119 | 95 | 1 | 0 | 2 | 155 | 119 | 389 | ||
98 | 9 | 115 | 0 | 2 | 1 | 98 | 303 | 262 | ||
115 | 98 | 9 | 2 | 1 | 0 | 409 | 245 | 9 | ||
9 | 115 | 98 | 1 | 0 | 2 | 156 | 115 | 392 | ||
96 | 10 | 116 | 0 | 2 | 1 | 96 | 304 | 263 | ||
116 | 96 | 10 | 2 | 1 | 0 | 410 | 243 | 10 | ||
10 | 116 | 96 | 1 | 0 | 2 | 157 | 116 | 390 | ||
93 | 11 | 118 | 0 | 2 | 1 | 93 | 305 | 265 | ||
118 | 93 | 11 | 2 | 1 | 0 | 412 | 240 | 11 | ||
11 | 118 | 93 | 1 | 0 | 2 | 158 | 118 | 387 | ||
97 | 12 | 113 | 0 | 2 | 1 | 97 | 306 | 260 | ||
113 | 97 | 12 | 2 | 1 | 0 | 407 | 244 | 12 | ||
12 | 113 | 97 | 1 | 0 | 2 | 159 | 113 | 391 | ||
92 | 13 | 117 | 0 | 2 | 1 | 92 | 307 | 264 | ||
117 | 92 | 13 | 2 | 1 | 0 | 411 | 239 | 13 | ||
13 | 117 | 92 | 1 | 0 | 2 | 160 | 117 | 386 | ||
94 | 14 | 114 | 0 | 2 | 1 | 94 | 308 | 261 | ||
114 | 94 | 14 | 2 | 1 | 0 | 408 | 241 | 14 | ||
14 | 114 | 94 | 1 | 0 | 2 | 161 | 114 | 388 | ||
81 | 15 | 126 | 0 | 2 | 1 | 81 | 309 | 273 | ||
126 | 81 | 15 | 2 | 1 | 0 | 420 | 228 | 15 | ||
15 | 126 | 81 | 1 | 0 | 2 | 162 | 126 | 375 | ||
84 | 16 | 122 | 0 | 2 | 1 | 84 | 310 | 269 | ||
122 | 84 | 16 | 2 | 1 | 0 | 416 | 231 | 16 | ||
16 | 122 | 84 | 1 | 0 | 2 | 163 | 122 | 378 | ||
82 | 17 | 123 | 0 | 2 | 1 | 82 | 311 | 270 | ||
123 | 82 | 17 | 2 | 1 | 0 | 417 | 229 | 17 | ||
17 | 123 | 82 | 1 | 0 | 2 | 164 | 123 | 376 | ||
79 | 18 | 125 | 0 | 2 | 1 | 79 | 312 | 272 | ||
125 | 79 | 18 | 2 | 1 | 0 | 419 | 226 | 18 | ||
18 | 125 | 79 | 1 | 0 | 2 | 165 | 125 | 373 | ||
83 | 19 | 120 | 0 | 2 | 1 | 83 | 313 | 267 | ||
120 | 83 | 19 | 2 | 1 | 0 | 414 | 230 | 19 | ||
19 | 120 | 83 | 1 | 0 | 2 | 166 | 120 | 377 | ||
78 | 20 | 124 | 0 | 2 | 1 | 78 | 314 | 271 | ||
124 | 78 | 20 | 2 | 1 | 0 | 418 | 225 | 20 | ||
20 | 124 | 78 | 1 | 0 | 2 | 167 | 124 | 372 | ||
80 | 21 | 121 | 0 | 2 | 1 | 80 | 315 | 268 | ||
121 | 80 | 21 | 2 | 1 | 0 | 415 | 227 | 21 | ||
21 | 121 | 80 | 1 | 0 | 2 | 168 | 121 | 374 | ||
60 | 22 | 140 | 0 | 2 | 1 | 60 | 316 | 287 | ||
140 | 60 | 22 | 2 | 1 | 0 | 434 | 207 | 22 | ||
22 | 140 | 60 | 1 | 0 | 2 | 169 | 140 | 354 | ||
63 | 23 | 136 | 0 | 2 | 1 | 63 | 317 | 283 | ||
136 | 63 | 23 | 2 | 1 | 0 | 430 | 210 | 23 | ||
23 | 136 | 63 | 1 | 0 | 2 | 170 | 136 | 357 | ||
61 | 24 | 137 | 0 | 2 | 1 | 61 | 318 | 284 | ||
137 | 61 | 24 | 2 | 1 | 0 | 431 | 208 | 24 | ||
24 | 137 | 61 | 1 | 0 | 2 | 171 | 137 | 355 | ||
58 | 25 | 139 | 0 | 2 | 1 | 58 | 319 | 286 | ||
139 | 58 | 25 | 2 | 1 | 0 | 433 | 205 | 25 | ||
25 | 139 | 58 | 1 | 0 | 2 | 172 | 139 | 352 | ||
62 | 26 | 134 | 0 | 2 | 1 | 62 | 320 | 281 | ||
134 | 62 | 26 | 2 | 1 | 0 | 428 | 209 | 26 | ||
26 | 134 | 62 | 1 | 0 | 2 | 173 | 134 | 356 | ||
57 | 27 | 138 | 0 | 2 | 1 | 57 | 321 | 285 | ||
138 | 57 | 27 | 2 | 1 | 0 | 432 | 204 | 27 | ||
27 | 138 | 57 | 1 | 0 | 2 | 174 | 138 | 351 | ||
59 | 28 | 135 | 0 | 2 | 1 | 59 | 322 | 282 | ||
135 | 59 | 28 | 2 | 1 | 0 | 429 | 206 | 28 | ||
28 | 135 | 59 | 1 | 0 | 2 | 175 | 135 | 353 | ||
88 | 29 | 105 | 0 | 2 | 1 | 88 | 323 | 252 | ||
105 | 88 | 29 | 2 | 1 | 0 | 399 | 235 | 29 | ||
29 | 105 | 88 | 1 | 0 | 2 | 176 | 105 | 382 | ||
91 | 30 | 101 | 0 | 2 | 1 | 91 | 324 | 248 | ||
101 | 91 | 30 | 2 | 1 | 0 | 395 | 238 | 30 | ||
30 | 101 | 91 | 1 | 0 | 2 | 177 | 101 | 385 | ||
89 | 31 | 102 | 0 | 2 | 1 | 89 | 325 | 249 | ||
102 | 89 | 31 | 2 | 1 | 0 | 396 | 236 | 31 | ||
31 | 102 | 89 | 1 | 0 | 2 | 178 | 102 | 383 | ||
86 | 32 | 104 | 0 | 2 | 1 | 86 | 326 | 251 | ||
104 | 86 | 32 | 2 | 1 | 0 | 398 | 233 | 32 | ||
32 | 104 | 86 | 1 | 0 | 2 | 179 | 104 | 380 | ||
90 | 33 | 99 | 0 | 2 | 1 | 90 | 327 | 246 | ||
99 | 90 | 33 | 2 | 1 | 0 | 393 | 237 | 33 | ||
33 | 99 | 90 | 1 | 0 | 2 | 180 | 99 | 384 | ||
85 | 34 | 103 | 0 | 2 | 1 | 85 | 328 | 250 | ||
103 | 85 | 34 | 2 | 1 | 0 | 397 | 232 | 34 | ||
34 | 103 | 85 | 1 | 0 | 2 | 181 | 103 | 379 | ||
87 | 35 | 100 | 0 | 2 | 1 | 87 | 329 | 247 | ||
100 | 87 | 35 | 2 | 1 | 0 | 394 | 234 | 35 | ||
35 | 100 | 87 | 1 | 0 | 2 | 182 | 100 | 381 | ||
53 | 36 | 133 | 0 | 2 | 1 | 53 | 330 | 280 | ||
133 | 53 | 36 | 2 | 1 | 0 | 427 | 200 | 36 | ||
36 | 133 | 53 | 1 | 0 | 2 | 183 | 133 | 347 | ||
56 | 37 | 129 | 0 | 2 | 1 | 56 | 331 | 276 | ||
129 | 56 | 37 | 2 | 1 | 0 | 423 | 203 | 37 | ||
37 | 129 | 56 | 1 | 0 | 2 | 184 | 129 | 350 | ||
54 | 38 | 130 | 0 | 2 | 1 | 54 | 332 | 277 | ||
130 | 54 | 38 | 2 | 1 | 0 | 424 | 201 | 38 | ||
38 | 130 | 54 | 1 | 0 | 2 | 185 | 130 | 348 | ||
51 | 39 | 132 | 0 | 2 | 1 | 51 | 333 | 279 | ||
132 | 51 | 39 | 2 | 1 | 0 | 426 | 198 | 39 | ||
39 | 132 | 51 | 1 | 0 | 2 | 186 | 132 | 345 | ||
55 | 40 | 127 | 0 | 2 | 1 | 55 | 334 | 274 | ||
127 | 55 | 40 | 2 | 1 | 0 | 421 | 202 | 40 | ||
40 | 127 | 55 | 1 | 0 | 2 | 187 | 127 | 349 | ||
50 | 41 | 131 | 0 | 2 | 1 | 50 | 335 | 278 | ||
131 | 50 | 41 | 2 | 1 | 0 | 425 | 197 | 41 | ||
41 | 131 | 50 | 1 | 0 | 2 | 188 | 131 | 344 | ||
52 | 42 | 128 | 0 | 2 | 1 | 52 | 336 | 275 | ||
128 | 52 | 42 | 2 | 1 | 0 | 422 | 199 | 42 | ||
42 | 128 | 52 | 1 | 0 | 2 | 189 | 128 | 346 | ||
67 | 43 | 112 | 0 | 2 | 1 | 67 | 337 | 259 | ||
112 | 67 | 43 | 2 | 1 | 0 | 406 | 214 | 43 | ||
43 | 112 | 67 | 1 | 0 | 2 | 190 | 112 | 361 | ||
70 | 44 | 108 | 0 | 2 | 1 | 70 | 338 | 255 | ||
108 | 70 | 44 | 2 | 1 | 0 | 402 | 217 | 44 | ||
44 | 108 | 70 | 1 | 0 | 2 | 191 | 108 | 364 | ||
68 | 45 | 109 | 0 | 2 | 1 | 68 | 339 | 256 | ||
109 | 68 | 45 | 2 | 1 | 0 | 403 | 215 | 45 | ||
45 | 109 | 68 | 1 | 0 | 2 | 192 | 109 | 362 | ||
65 | 46 | 111 | 0 | 2 | 1 | 65 | 340 | 258 | ||
111 | 65 | 46 | 2 | 1 | 0 | 405 | 212 | 46 | ||
46 | 111 | 65 | 1 | 0 | 2 | 193 | 111 | 359 | ||
69 | 47 | 106 | 0 | 2 | 1 | 69 | 341 | 253 | ||
106 | 69 | 47 | 2 | 1 | 0 | 400 | 216 | 47 | ||
47 | 106 | 69 | 1 | 0 | 2 | 194 | 106 | 363 | ||
64 | 48 | 110 | 0 | 2 | 1 | 64 | 342 | 257 | ||
110 | 64 | 48 | 2 | 1 | 0 | 404 | 211 | 48 | ||
48 | 110 | 64 | 1 | 0 | 2 | 195 | 110 | 358 | ||
66 | 49 | 107 | 0 | 2 | 1 | 66 | 343 | 254 | ||
107 | 66 | 49 | 2 | 1 | 0 | 401 | 213 | 49 | ||
49 | 107 | 66 | 1 | 0 | 2 | 196 | 107 | 360 |
Put the 49 (semi)magic 3x3 squares together in sequence of the middle number to get the right sum in the diagonal from top left to bottom right.
21x21 magic square
50 | 335 | 278 | 51 | 333 | 279 | 52 | 336 | 275 | 53 | 330 | 280 | 54 | 332 | 277 | 55 | 334 | 274 | 56 | 331 | 276 |
425 | 197 | 41 | 426 | 198 | 39 | 422 | 199 | 42 | 427 | 200 | 36 | 424 | 201 | 38 | 421 | 202 | 40 | 423 | 203 | 37 |
188 | 131 | 344 | 186 | 132 | 345 | 189 | 128 | 346 | 183 | 133 | 347 | 185 | 130 | 348 | 187 | 127 | 349 | 184 | 129 | 350 |
57 | 321 | 285 | 58 | 319 | 286 | 59 | 322 | 282 | 60 | 316 | 287 | 61 | 318 | 284 | 62 | 320 | 281 | 63 | 317 | 283 |
432 | 204 | 27 | 433 | 205 | 25 | 429 | 206 | 28 | 434 | 207 | 22 | 431 | 208 | 24 | 428 | 209 | 26 | 430 | 210 | 23 |
174 | 138 | 351 | 172 | 139 | 352 | 175 | 135 | 353 | 169 | 140 | 354 | 171 | 137 | 355 | 173 | 134 | 356 | 170 | 136 | 357 |
64 | 342 | 257 | 65 | 340 | 258 | 66 | 343 | 254 | 67 | 337 | 259 | 68 | 339 | 256 | 69 | 341 | 253 | 70 | 338 | 255 |
404 | 211 | 48 | 405 | 212 | 46 | 401 | 213 | 49 | 406 | 214 | 43 | 403 | 215 | 45 | 400 | 216 | 47 | 402 | 217 | 44 |
195 | 110 | 358 | 193 | 111 | 359 | 196 | 107 | 360 | 190 | 112 | 361 | 192 | 109 | 362 | 194 | 106 | 363 | 191 | 108 | 364 |
71 | 300 | 292 | 72 | 298 | 293 | 73 | 301 | 289 | 74 | 295 | 294 | 75 | 297 | 291 | 76 | 299 | 288 | 77 | 296 | 290 |
439 | 218 | 6 | 440 | 219 | 4 | 436 | 220 | 7 | 441 | 221 | 1 | 438 | 222 | 3 | 435 | 223 | 5 | 437 | 224 | 2 |
153 | 145 | 365 | 151 | 146 | 366 | 154 | 142 | 367 | 148 | 147 | 368 | 150 | 144 | 369 | 152 | 141 | 370 | 149 | 143 | 371 |
78 | 314 | 271 | 79 | 312 | 272 | 80 | 315 | 268 | 81 | 309 | 273 | 82 | 311 | 270 | 83 | 313 | 267 | 84 | 310 | 269 |
418 | 225 | 20 | 419 | 226 | 18 | 415 | 227 | 21 | 420 | 228 | 15 | 417 | 229 | 17 | 414 | 230 | 19 | 416 | 231 | 16 |
167 | 124 | 372 | 165 | 125 | 373 | 168 | 121 | 374 | 162 | 126 | 375 | 164 | 123 | 376 | 166 | 120 | 377 | 163 | 122 | 378 |
85 | 328 | 250 | 86 | 326 | 251 | 87 | 329 | 247 | 88 | 323 | 252 | 89 | 325 | 249 | 90 | 327 | 246 | 91 | 324 | 248 |
397 | 232 | 34 | 398 | 233 | 32 | 394 | 234 | 35 | 399 | 235 | 29 | 396 | 236 | 31 | 393 | 237 | 33 | 395 | 238 | 30 |
181 | 103 | 379 | 179 | 104 | 380 | 182 | 100 | 381 | 176 | 105 | 382 | 178 | 102 | 383 | 180 | 99 | 384 | 177 | 101 | 385 |
92 | 307 | 264 | 93 | 305 | 265 | 94 | 308 | 261 | 95 | 302 | 266 | 96 | 304 | 263 | 97 | 306 | 260 | 98 | 303 | 262 |
411 | 239 | 13 | 412 | 240 | 11 | 408 | 241 | 14 | 413 | 242 | 8 | 410 | 243 | 10 | 407 | 244 | 12 | 409 | 245 | 9 |
160 | 117 | 386 | 158 | 118 | 387 | 161 | 114 | 388 | 155 | 119 | 389 | 157 | 116 | 390 | 159 | 113 | 391 | 156 | 115 | 392 |
Each 1/7 row/column gives 1/7 of the magic sum and the 21x21 magic square is 3x3 compact.
I have used composite method, proportional (1) to construct
8x8, 9x9, 12x12a, 12x12b, 15x15a, 15x15b, 16x16a, 16x16b, 18x18, 20x20a, 20x20b, 21x21a, 21x21b, 24x24a, 24x24b, 24x24c, 27x27a, 27x27b, 28x28a, 28x28b, 30x30a, 30x30b,32x32a, 32x32b and 32x32c